Battlecode 2021 Postmortem

Isaac Liao

February 4, 2021

Overview

This document provides an overview of my experience participating in the Battlecode 2021 competi-
tion on a one-person team called wololo, which placed seventh in the final tournament. I first outline the
rules of the competition game, then I explain the theoretical and strategical side of the game that arises
from these rules, and finally I detail my implementation of the strategies found, as well as the algorithms
used to do so. I finish with a timeline of my code’s development with respect to major events throughout
the duration of the competition. At the time of this competition, I was an MIT sophomore student who
had already competed in the previous Battlecode 2020 competiton on a one-person team called asdf,
which championed the Newbie Tournament and placed 13th in the US Qualifying Tournament.

Figure 1: The popular game Age of Empires II was the first game I ever coded an Al for. Players often
recollected the monk from Age of Empires I, who made a peculiar sound resembling “wololo” while converting
other players’ units to his own team.

1 Competition Game Rules

The Battlecode 2021 game featured a rectangular map of width and height between 32 and 64 square tiles
of unit length, each with a “passability” value between 0.1 and 1. “Robots”, classified as “units” and
“buildings”, each with their own non-negative amount of “conviction”, belonging to either of two teams or
which are “neutral”, were situated on each of these tiles. The game consisted of 3000 rounds (later changed
to 1500 by Teh Devs), and in each round, every robot would run one iteration of its team’s code, whose
purpose was to decide whether the robot should take an action for that round, and what action to take. Each
robot began a “cooldown” period after every action during which no other actions could be taken, and whose
duration was inversely proportional to the passability of the tile on which the robot resided. Additionally,
a “vote” was provided on each round, which would be awarded to the team of the building which chose to
bid and pay the greatest amount of its conviction for that round. If at any time before the last round, one
team owned no units and buildings, the opponent team won and the game ended. If the last round was
reached, the team which had accumulated the greater number of votes won. The competitors on each team
were responsible for providing the code for their team which their robots ran, in order to try to produce the
winning outcome when the game was played between two teams.

Figure 2: The map Radial used in the Battlecode Sprint 2 Tournament. Greener tiles were more passable
while purple tiles were less passable.

1.1 Robots
There were four types of robots—three units and one building;:

e An Enlightenment Center (EC) was a building which could not move. Its only allowed action was to
build any kind of unit on an adjacent tile' using any amount of its own conviction, which it transferred
from itself to the unit. This amount of conviction was then called the unit’s “influence”, which acted
as a cap for the amount of conviction that the unit could have at any given time. If a muckraker was
built, then only 0.7 times the amount of conviction spent was transferred to the muckraker, and the

other 30% was lost. All non-neutral ECs passively gained some influence per turn, proportional to the

1 Adjacency was defined as the eight tiles surrounding a single tile.

square root of the round number, to allow them to continue building so that the game did not stagnate.

e A Slanderer was a unit whose only allowed action was to slowly move to an adjacent tile. For the first
50 turns of a slanderer’s life, it “embezzled” giving the EC which built the slanderer some conviction
every turn, so long as the slanderer existed and the EC did not switch teams. The amount of conviction
produced per turn was linear multiplied by a decaying exponential, in the influence of the slanderer.
If a slanderer existed for 300 turns, it then “camouflaged” and became a politician.

e A Politician was a unit whose possible actions were to quickly move to an adjacent tile or to “empower”
with a specified radius of at most 3, removing itself from the map, and dividing and transferring its
own conviction (after an initial tax of 10 conviction) equally among other robots within the radius,
increasing the conviction of affected friendly robots and decreasing the conviction of all other affected
robots. Any affected robot that ended up with a negative conviction was removed from the map if it
was a slanderer or muckraker, and otherwise its conviction was negated and it changed to the team
of the empowering robot. Additionally, all convictions for all affected units were then capped at their
influence.

e A Muckraker was a unit whose possible actions were to move to an adjacent tile or to “expose” a slan-
derer at most v/12 tiles away. Upon exposing a slanderer, all the politicians on the team of the exposing
muckraker obtained a “buff factor” for 50 rounds, which was multiplied to the empowering politician’s
conviction before it was divided between units within the empower radius. The buff applied had
originally been LO]_inﬂuence of exposed slanderer’ but was qulckly Changed to LOO]_inﬂuence of exposed slanderer
in an effort by Teh Devs to balance the game. Multiple buffs at the same time resulted in them
combining multiplicatively.

Table 1: Robot types

Symbol Name Action Cooldown
®9® Enlightenment Center 2 /passability
NN Slanderer 2 /passability
v Muckraker 1.5/passability
$8 Politician 1/passability

Each robot was only able to sense map tiles and robots within a certain sensor radius as determined by
the type of robot, and alone could not discern where the map boundaries were relative to itself, unless it had
travelled to the boundary to sense it. Lastly, each robot had a unique ID number which could be sensed by
other nearby robots, and carried a “flag” set to a 24-bit integer of choice every round, which other nearby
robots could sense. ECs had the additional bonus of being able to see the flag of any robot for which it had
the ID number, and any robot could see the flag of an EC for which it had the ID number.

All robots were constrained to use a limited number of “bytecodes” per round, which measured the
computation costs of each block of Java code, in order to keep computation costs low. If any robot exceeeded
its bytecode limit as determined by its robot type, it would halt its code for the round and take no action,
and proceed the next round where its code left off, losing one round’s worth of action.

1.2 General Principles

Every year, the Battlecode game features a map with many robots which run their own code. Teh Devs
generally try to design the rules of the game such that at least several strategic paradigms are be available,
most commonly the “rush” and the “turtle”, which commonly appear in many strategy games far beyond
Battlecode. The concept of a “rush” is to quickly overwhelm the opponent as early as possible to obtain a
winning position and end the game early before the main parts of the opponent’s plan come to fruition, and
the concept of a “turtle” is to build a strong defense to defend many weaker “economic” units which reside
within, to gain an advantage of resources over the opponent which is used to overwhelm them later in the
game. From the rules of the Battlecode 2021 game, it could be quickly determined that conviction was a

major resource, the slanderer was therefore intended to be an “economic” unit, the “muckraker” was intended
to be an “attacking” unit (as it could expose the “economic” slanderers), and the politician was intended to
serve doubly as a “defending” unit (as it could empower to remove invading muckrakers) and an “attacking”
unit (as it could convert ECs). I therefore believe that Teh Devs expected a typical “balanced” strategy to
involve a group of slanderers and an EC to produce conviction income, defended by politicians to empower
against and remove approaching muckrakers, combined with some muckrakers and politicians on the offense,
trying to expose opponent slanderers and convert opponent ECs. As each robot runs its own independent
copy of the code, the Battlecode game typically features some method of inter-robot communication to allow
for coordination between robots as required by more complex strategies, which in this year, was allowed by
the flags carried by the robots.

2 Theoretical Strategy

In this section, I explain the theoretical side of the game, to develop an understanding of how the rules of
the game gave rise to the strategies used, and how and why they worked, without too much regard for their
implementation, which is discussed later.

2.1 Economy

Anything which T would consider to be an important economic/strategic “resource” satisfies the following:
e If your team had none of it, you’ve probably lost,
e You could remove it from the opponent,
e It could be difficult to obtain if the opponent was trying to prevent you from doing so.

At first glance, one would likely assume that an important resource in Battlecode 2021 was total conviction,
since Teh Devs clearly designed it to be a resource, as evident by their explanation of the rules of the game.
Indeed, if your team had no conviction you probably didn’t have any units, you could remove conviction from
the opponent by empowering politicians nearby, and conviction could be difficult to obtain if the opponent
tried to convert your EC and expose your slanderers. However, this was not the only resource: another
was the total number of units belonging to your team; you could prevent the opponent from building units
by using your own to stand on tiles adjacent to opponent ECs, preventing them from building on adjacent
tiles, and you could also use one politician to empower near multiple opponent units to convert or remove
them—both tactics could be difficult for the opponent to stop. Assuming that a game lasted until the final
round, the number of votes could also be an important resource; you could win more votes than the opponent
by bidding with extremely large amounts of conviction, and in some situations this could also be difficult for
the opponent to stop. In the interest of simplicity, I only consider the difference in total conviction, unit
number, and number of votes between the two teams as the relevant currency when discussing trading. My
robots often faced the choice of whether to sacrifice some amount of one currency to gain some amount of
another, i.e. to perform a trade, and here it was crucial that the correct decision be made using an estimated
exchange rate.

2.2 Slanderer-Free Trading

Certain actions could be taken to force a strict gain of resource advantage or an exchange of one currency
for another, and others could force a trade of currencies. In this section, it is assumed that by default for
simplicity, that all non-neutral ECs never built any slanderers, and always attempted to build a 1 conviction
muckraker every time they were able to take an action, because this allowed a gain of 1 unit count at no cost,
which could not be bad for the team. These cheap muckrakers could then travel to the opponent’s EC to
stand on the adjacent tiles and prevent it from building units there, essentially “burying” it in muckrakers.
Every turn that my own EC was able to build a unit while my opponent’s was buried resulted in me gaining
an advantage of 1 unit count for free, and thus the opponent was forced to respond. The opponent might
choose to also bury my own EC, resulting in a net exchange of no resources, and/or they might choose to

prevent me from burying their EC. This was be possible by forming a membrane of units around their EC
across which no muckrakers could pass. Although this seemed like a good option, it was doomed to fail
because I could simply bury the opponent’s entire membrane preventing units from escaping, such that the
number of units which could be built by the opponent’s EC before it ran out of building locations was upper
bounded by the area within the membrane, resulting in the same gain of 1 unit count for free per action for
my team. The only other way for my opponent to prevent me from burying their EC was for them to build
politicians which empowered to remove my burying muckrakers from the map. If one of their politicians
empowered to remove exactly 1 muckraker, my opponent gained no net unit count but incurred a conviction
loss of at least the empower tax, thus giving me a guaranteed advantage, unless they also built at least one
slanderer to reproduce the lost conviction, which is discussed in Section 2.4. The only alternative response
by the opponent which did not guarantee a net loss of resources was for an opponent politician to empower to
remove at least two muckrakers, resulting in a net unit count gain and net conviction loss for my opponent,
i.e. a trade of about 1 unit count for about 12 conviction. With good micro as discussed in Section 5, I was
able to move my muckrakers into positions which didn’t often allow for such favorable exchange rates for
my opponent, forcing them to empower to remove less than 2 muckrakers from the map in the average case,
to trade off their ~ 12 conviction spent on their politician for < 1 unit count in the average case. Since
the game allowed an EC to produce up to 1/2 a muckraker per round (each muckraker may force a trade of
> 12 conviction) and no more than ~ 7 influence per round to buy defensive politicians, a constant stream
of burying muckrakers from my EC could force such expensive trades which drained the opponent EC of
conviction faster than it passively gained in most cases, slowly bringing it to 0 conviction, when it could no
longer produce defensive politicians and consequently got buried by my muckrakers.

Figure 3: My units in blue, completely surrounding the opponent’s EC and cluster of muckrakers in red.

The conclusion of this analysis is that in a scenario which does not involve slanderers, it was always
favorable to produce a constant stream of muckrakers which attempt to micro while burying an opponent
EC. That said, my opponent should therefore choose to use the same strategy or one which would force
at least as favorable an advantage (I have not found any such alternative strategy). Thus, the ideal game
without consideration for slanderers or neutral ECs was one where both teams rushed with muckrakers to
bury the opponent’s EC using good micro, and both teams defended with politicians attempting to empower
near as many muckrakers as possible, slowly draining both ECs to 0 conviction at which point both ECs
would be buried at the same time? and the team with the better bidding algorithm would win by vote. If
the opponent had worse micro, did not attempt to bury you, or attempted to modify the strategy by buying
a significant number of votes at any point, they might not have been able to force as favorable trades as you
could, and would have less conviction in their EC than you would have in yours. They would then run out
before you do and you would successfully bury them first, preventing them from building any muckrakers
required to bury you, at which point you could freely clear the map of opponent muckrakers by building and
empowering politicians, and proceed to safely build slanderers for a gigantic income without risk of exposure
to buy most of the remaining votes and win by vote. Therefore I believe that this strategy is close to the
Nash Equilibrium strategy if barring the use of any slanderers.

Oftentimes, the game arrived at a point where all the neutral ECs will have been captured, and muckrakers
of both teams were abundant throughout the entire map to expose any slanderers made. In such situations,
the game should be played as I have described. If not all the neutral ECs have been captured, sending a
politician to capture them resulted in a gain of 1/2 a unit count per round in most cases, so it was extremely
important to capture the neutral ECs as early as possible. Delaying by even 20 rounds resulted in a loss of

2Teams rarely ever played perfectly until this outcome, so further analysis tends to be futile.

a 10 unit count advantage, which could have been used to force a trade of > 120 conviction, which was very
significant in the early game.

2.3 Slanderers

The graph relating a slanderer’s conviction to the amount of conviction it produced for its parent EC is
shown in Figure 4. Ignoring the conviction which was retained by the slanderer, one can observe that the
conviction gain was locally maximized around a specific set of slanderer convictions, due to the way in which
the rules for slanderer income produced many downward-sloping diagonal lines in the graph, and thus it
only made sense to build slanderers with these specific convictions. Additionally, it can be observed that a
slanderer with 949 conviction produced the maximum possible amount of 551 net conviction for its parent
EC. Consequently, if an EC had a small amount of conviction, it could spend it on slanderers to multiply and
exponentially grow its conviction, but if an EC had a large amount of conviction, spending 949 conviction
on a slanderer for every action produced the maximum possible rate of conviction gain, to linearly grow its
conviction, again ignoring any conviction which was retained by the slanderer. One may wish to ignore the
conviction retained by slanderers if it is expected that they would all be exposed before they camouflaged
into politicians. Otherwise upon camouflage, the retained conviction then became useful, as the resulting
politician might use it to empower near other robots, most notably its parent EC, so that the EC could
re-spend the conviction in the politician as well as the embezzle income to build even more large slanderers.
In this case, one might desire to build slanderers past 949 conviction, as the total conviction of the politician
upon camouflage and the embezzle income would be approximately double the initial conviction, allowing
for the EC’s conviction to undergo unlimited slow exponential growth.?> The building of slanderers often
required a temporary sacrifice of unit count, as the slanderers took EC actions to build, and yet became
sitting ducks without much use, hiding from opponent muckrakers until they camouflaged into politicians.
Moreover, if a slanderer was exposed, the sacrifice of unit count became permanent, and this was often a
very large risk which could easily lose the game.

2.4 Trading with Slanderers

Assume that the opponent attempted to rush with burying muckrakers, and I was forced to defend. In a
slanderer-free world, I would be forced to constantly trade by building politicians in a manner guaranteed
to drain my EC to 0 conviction. Now consider instead what would have happened if I also built slanderers
which I protected from exposure by opponent muckrakers using encircling politicians which empowered near
any approaching muckrakers, a defensive “turtle” strategy first spearheaded by team babyducks. The
politician-muckraker trading would work in the same way as in the slanderer-free case described before,
draining my EC of conviction faster than it could replenish. But now if the slanderers built produced an
income which exceeded the conviction lost through defense minus what I would have gained by building
bury-rushing muckrakers instead, then I would have a guaranteed conviction advantage, else the opposite
is true and my opponent would have a guaranteed advantage, thus for this strategy to work, I must have
spent a significant amount on slanderers, as defense is very conviction-expensive, especially in the early
game. Additionally, since defenses typically traded net zero unit count if the opponent had good micro, a
constant stream of rushing units could use up almost all the unit count production of my EC, stopping me
from building slanderers, further constricting my conviction income. Considering that my opponent must
have explored the map using their muckrakers in order to find my EC(s) and bury it(them), I do have a
small amount of time to freely build a small slanderer economy, with the hope that it would have grown
large enough to be able to sustain the defense costs once my opponent’s muckrakers reached me. On maps
with generally low passability and where the ECs were very close to each other, this was not possible as
my opponent’s muckrakers would find me before I developed the economy required to sustain a defense
and the optimal strategy was to rush and bury like in the slanderer-free case. On higher passability maps
with ECs far apart, it was very easy to build a stronger slanderer economy in the early game and sustain

3For some unknown reason, no discussion of this strategy ever took place of my knowledge among the many competitors
despite their diligent study of the game. As far as I know, the only place this was ever used was in my code submission for
the Battlecode Sprint 1 tournament. I did not have enough time to include and debug this strategy for the other tournaments,
though it would have probably made drastic late game economic improvements.

A0

400 \\\\ 1 \\\
pRRER| \

i \ \\ Iy,

| LT I

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 ' VELYY lel

Figure 4: On the horizontal axis is the amount of conviction spent to build a slanderer, and on the vertical
axis is the amount of conviction generated by the slanderer minus the amount spent to build it. Credits go
to [EZ Money| ambysco for producing and sharing this graph.

a defense, as my opponent’s muckrakers could not reach me in time to prevent me from doing so, giving
me a conviction advantage and net zero unit count, and the optimal early game strategy was to build and
protect a slanderer economy, i.e. to turtle. Consequently, my opponent should also try to turtle in this
situation, and whichever player could spend more on slanderers while protecting them from exposure would
be at a conviction advantage. In this case, early attempts to convert expensive neutral ECs might hinder
the slanderer economy, as conviction would be spent on the politician used to convert it, which could have
instead been spent on a slanderer. On the other hand, having an extra EC allowed me to constantly build
burying muckrakers, each of which traded at my opponent’s defenses for a value of > 12 conviction and
forced them to replenish their defenses, costing both players roughly equal unit count, which I would have
more of. If neutral ECs were cheap, it might be more favorable to convert them early to promptly drain 12
conviction from my opponent, but if they were expensive it might be worth converting them later to spend
more on early slanderer economy since spending large percentages of my total EC conviction drastically
delayed the exponential growth of my slanderer economy, possibly giving my opponent as much as 3x more
conviction than me. Thus it was extremely important to judge the distance and passability between my EC
and my opponent’s to determine whether to rush and bury or to turtle with a defended slanderer economy,
and to judge the conviction of the neutral ECs to determine the best possible time to spend on converting
them.

Figure 5: An early variant of the turtle strategy pioneered by team babyducks in red.

3 Algorithms

In this section I explain several algorithmic techniques which I used in my code, some of them fairly unique.
For more details, the code I used for the competition is available at https://github.com/iliao2345/
Battlecode2021, though I must warn that it is slightly messy due to the time-restrictive nature of Battlecode.

3.1 Reversed For Loop

It was known among many Battlecode competitors that the method of iteration with the lowest bytecode
cost per iteration was the “reversed for loop”. This technique was only useful for Battlecode, and does not

https://github.com/iliao2345/Battlecode2021
https://github.com/iliao2345/Battlecode2021

w N

likely have any application elsewhere.

for (int i=stop; --i>=0;) {
// loop contents
}

3.2 Distributed Bellman-Ford Algorithm

Oftentimes, it was useful for a large number of units to know how far they each were from a set of features
on the map. Here, it is assumed that units were present throughout the areas of the map between the units
and the features, in a dense enough quantity such that the visibility graph among the units was very well-
connected. Given that each unit was capable of limited computational power and was able to communicate
through its flag to nearby units, I used the following method to compute the desired shortest distances from
each unit to the set of features. Each unit showed on its flag an approximate distance to the nearest feature.
Each round, the approximate distance was incremented, and then for each nearby unit, the approximate
distance was capped at each of the distances shown by the flags of the nearby unit plus the distance to that
unit. If a unit sensed a feature at any time, it capped its approximate distance at the distance from the
unit to the feature. Many different distance functions were appropriate depending on the usage case of this
protocol. For pathfinding, it was often useful to use the euclidean distance divided by the passability of
the tile which the unit was on, as this took into account that units travelled slower on low passability tiles,
while still maintaining a relatively low bytecode usage. For many other applications though, I often used a
distance of one for every sensable unit, as travel duration was not of significant concern.

3.3 Integer Cycler

Common Java utility functions were often assigned extremely high bytecode costs by Battlecode, and thus
competitors often constructed their own custom data structures for replacement. In my case, I required a
set of integers which could be iterated through, to which elements may be added and from which elements
could be removed. I therefore created the “integer cycler”, which consisted of a set of objects arranged in
a cycle, each with a reference to the next and previous object, and each storing one integer, like in a linked
list, but circular. I could easily add an element or remove an element by manipulating the references in a
local area of the data structure, and also track the size of the cycle by incrementing and decrementing a size
variable every time an integer was added or removed.

3.4 Optimal Empower Radius

When a politician empowered, it had to choose the correct radius with which to empower to capture the
set of units which allowed it to perform the best trade possible. In this section, I assume that an exchange
rate between unit count and conviction was given, such that any net unit gain could be converted to net
conviction gain, and only one currency had to be considered while weighing the favorability of various choices
of empower radius. The first step was to count the number of robots within each possible empower radius
under consideration. Only the radii of 1, /2,2, /5, v/8, 3 needed to be considered, as all robots lay on lattice
points and the maximum allowed empower radius was 3. I iterated through each sensed robot within 3
tiles of the empowering politician and counted the number which were exactly at each radius, then took a
cumulative sum over the radii to cheaply count the robots within each radius. I then proceeded to compute
the conviction quota given to an affected robot for every radius, remembering to take into account the
empower tax, any buffs, and floor division effects. Then again, I iterated through each sensed robot within
3 tiles of the empowering politician, this time counting the amount of conviction and unit count each team
would gain and lose for all of the radii. By default, the empowering politician lost one unit count and all of
its conviction because it would be removed from the map. ECs were treated as though they consisted of a
very large unit count (I used 50 for neutral ECs and 100 for other ECs) since they could be used to produce
unit count for a long duration of the game. I treated currency gained/lost for the empowering politician’s
opponent team as currency lost/gained for the empowering politician’s own team respectively, and finally
converted from unit count to conviction using the given exchange rate to produce the final net effective
conviction gain/loss for an empowerment at every possible radius. This information could then be used in

a myriad of ways. For example, if any of the empowerment radii would produce a net positive effective
conviction gain, then it would be favorable for the politician to empower with that radius, as the outcome
would be favorable according to the exchange rate. Otherwise, it would be favorable for the politician to not
empower at all, because all resulting outcomes would be unfavorable according to the exchange rate. Using
this algorithm to judge whether and how my politicians should empower, I implicitly ensured that:

e Large politicians did not waste conviction by empowering to affect much smaller units which only held
small amounts of conviction before it was capped at their influence.

e Small politicians never attempted to convert a lone large politician, wasting on empower tax without
converting, unless they had a significant buff from exposed slanderers.

e Politicians would often attempt to convert and/or remove multiple opponent units at once.

e Politicians occasionally deliberately “healed” friendly units whose conviction was lower than their
influence.

e Politicians would almost always choose to convert an EC to their team whenever possible.
e Politicians tended to prefer to convert opponent politicians over removing opponent muckrakers.

e Upon my team receiving a sufficiently large buff from exposed slanderers, politicians would often convert
two or more opponent politicians at the same time, bringing them to their maximum conviction, such
that they would proceed to do the same. This began a chain reaction, which was often able to clear
out the majority of the opponent’s local politicians in an extremely short period of time, while also
producing many leftover politicians for my own team in the process.

3.5 Minimax Move Direction

Thinking one step ahead of an opponent politician who wanted to empower, I wanted my own units to move
in such a manner to ensure that the opponent could never make a good trade by empowering. It turned
out that it was within bytecode limits to compute all the net effective conviction gains for every possible
empower radii of one opponent politician, given that one of my units in question moved in every possible
direction (or stood still) first. This enabled my unit to move in a direction which allowed for the worst
possible best (a min of a max, also known as “minimax”) empower radius for the opponent politician. In
most cases, the opponent politician would have no good (positive net effective conviction) empower radii, and
so the opponent politician could also choose not to empower, leaving me with many possible move directions
which all resulted in zero minimaxxed net effective conviction gain. The computation involved running an
optimal empower radius calculation for the opponent politician merely twice. The first time, I performed
the calculation excluding my unit which I could move, such that the results were as though my unit was
outside all the empower radii, and the second time, I performed the calculation including my unit as if it
were at a distance of one from the empowering politician, such that the results were as though my unit was
inside all the empower radii, all in all giving me the net effective conviction gain if my robot was inside or
outside every possible radius. The next step was to compute the best possible net effective conviction gain
for the empowering politician if my robot resided specifically at each radius. I took a cumulative max of
the “inside” gains and a cumulative max of the “outside” gains in the opposite direction, and then took the
max of consecutive pairs of “inside” cumulative max gains and “outside” cumulative max gains, because if
my robot was at a certain radius, then the best net effective conviction gain was given by the max of the
“inside” gains for all the radii that my robot was inside and the “outside” gains for all the radii that my
robot was outside. My opponent could also choose to not empower, so I lower bounded the calculated values
by zero. Finally, I computed the distance to the empowering robot after every possible move direction for
my own robot, and assigned that move direction to the opponent’s best possible net effective conviction gain
associated with that radius, concluding the “max” portion of the minimax calculation. Since Battlecode
was a zero-sum game, I negated the calculated gains to produce the worst possible loss that the opponent
was able to force on my team by empowering for every direction my unit could move. I could then choose
to move in a direction for which the opponent politician could force at worst the minimum possible loss for

10

my team, i.e. to perform the “min” portion of the minimax calculation. By doing this, I implicitly ensured
that:

e Units tried to avoid opponent politicians if approaching them would allow them to empower to remove
and/or convert multiple units at once. Multiple removals and/or conversions is a tactic which most
top teams like California Roll (Chop Suey) relied on very heavily to win.

e Small politicians tried to avoid larger opponent politicians which were less than about twice their size,
to prevent the opponent from performing efficient conversions.

e Small units would stand next to large opponent politicians which attempted to empower to convert an
EC, so that the conviction they empowered with was diluted and wasted up until the point that the
opponent was no longer able to convert the EC.

e Units, especially politicians, tended to avoid opponent politicians if the opponent team had a large
buff, hindering chain reactions in favor of the opponent.

e Large units attempted to dilute an opponent politician’s empower conviction if doing so would prevent
a smaller friendly unit from being converted and/or removed.

e Bury-rushing units fled from defensive politicians as soon as they were built by the opponent EC to
avoid efficient multiple conversions/removals, and returned to bury the EC immediately once these
defensive politicians were gone.

e Small units did not waste time diluting an opponent politician’s empower conviction if the oppo-
nent’s own units congested and diluted themselves sufficiently in the first place, which was a common
occurrence near an EC being buried.

A very similar calculation would be done when considering a friendly politician who wanted to empower;
the intermediate step of negating the gains was simply removed as the empowering politician was on my
own team. By doing this, I also implicitly ensured that:

e Units tried to get out of the way of friendly politicians which could empower soon, so to not unneces-
sarily dilute their empower conviction.

e Units with less conviction than influence sometimes tried to move towards friendly politicians which
could potentially “heal” them.

3.6 Bury Sensing

When I buried an opponent EC, the EC was almost always a part of a cluster of opponent units on the
same team as the EC, and the whole cluster was surrounded by my burying units. If my opponent’s units
escaped to leave a void, the opponent EC could gain enough space to build more units, making my burying
effort unsuccessful, so I could not allow units to escape from the cluster. Yet if too many units were used
to bury the cluster, I was unable to perform trading using the unit count which was present in the burying
units, so I would incur an effective unit count disadvantage. Thus, I always attempted to bury the opponent
EC and the surrounding cluster using a one tile thick layer of burying units, freeing the remaining units to
perform other functions. To do this, my burying units needed to determine whether the opponent EC had
already been buried and could be ignored, and whether they were part of the one tile thick layer which had
to stay in place while other units could be free. Ordinarily, I would perform a graph search beginning from
my opponent’s EC to determine whether the cluster was completely enveloped in my burying units or was
adjacent to at least one empty tile, but bytecode limitations severely limited the usage of such an algorithm.
Therefore, my code performed a highly truncated version of a graph search in the form of a hardcoded triple
nested loop, and assumed that the opponent EC was not buried if the third loop called for the graph search
to continue further beyond. A unit determined whether it was part of the layer by determining whether
the truncated graph search ever reached itself. Despite the fact that the graph search was hardcoded and
truncated to ignore many possible use cases, it tended to function perfectly in the vast majority of cases.

11

3.7 Communication

Since communication through robot flags was limited to 24 bits per round for every robot, it was essential
that information be fairly compressed and shared very sparingly between robots. To share information, I
divided up the 24 bits of the flag into multi-bit segments, each representing an integer of data which ranged
from zero to the maximum integer which the segments could allow. Often to selectively transmit more
important information, I used the first few bits of the flag to indicate how the rest of the bits should have
been interpreted.

The map always had coordinates which were offset from the origin by large integers, such that commu-
nicating the full coordinates of important features was not reasonably possible within the amount of bits
given. Furthermore, no robot could easily tell the positions of the edges of the map without visiting them,
and could not use them as a reference point to communicate offsets from. Luckily, Teh Devs explained in
their lecture how transmitting the coordinates mod 128 was sufficient for any receiving robot to pinpoint
a unique location, because the map was at most 64 tiles in either dimension. I happily used this idea to
communicate locations between my robots, sometimes decreasing the resolution of the location data to save
bits for other uses, if only approximate locations were required.

Certain communicated quantities such as amounts of conviction could become extremely large over the
course of the game, yet would require precise resolution when they were small. For these quantities, I
communicated the logarithm of the quantity (with some rescaling to make the relevant range of quantities
match with the size of the segment of bits used) and took the exponent upon reading the flag to restore the
value.

4 Strategy Implementation

To execute the strategies described in Section 2, my code assigned each unit a “role”, which described the
functional portion of the strategy which the unit helped to execute, and the manner in which it did so. Each
unit’s role was also indicated through the flag it showed, so that other units were aware of its intentions.

4.1 Explorers

Arguably the most important reason that units were useful was because they were able to explore the map
and find features such as map edges, neutral ECs, and most importantly of course, my opponent. Units in
bulk had to be able to provide rapidly expanding vision and coverage over the map, relaying information
about map features back home to Enlightenment Centers through flags, so that time-sensitive decisions could
be made as early as possible. As such, all of my units were explorers by default, unless they were specifically
assigned to a different role. To perform exploration, I relied on a distributed Bellman-Ford Algorithm as
described in Section 3.2, where the relevant targetted features were areas of the map where my units were
largely absent, to allow each robot to determine how far it was from the nearest unexplored location. An
explorer judged its area of the map to be unexplored iff a full 180 degree view of its circular sensor area
was completely void of other explorers. If an explorer saw a map edge, it would pretend that the map edge
was a mirror, and that it could sense another explorer (its reflection) on the other side, so that it would
not judge areas off of the map to be unexplored and attempt to explore them. Each explorer also tracked
its own “momentum vector” capped at a maximum length, which was its preferred direction of movement
that it tried to move towards for every action. This momentum vector for any given explorer would be
updated every round by adding a “net force vector”, which was produced by treating every other sensed
explorer (including its own map edge reflections) as a point charge which it would repel from iff the sensed
explorer was least as far from the nearest unexplored area as itself, pushing it towards the nearest unexplored
location. The reason for moving according to a momentum vector rather than directly through the force
vector was to make explorers preferably move in straight lines away from home base when alone, helping to
prevent re-exploration of previously explored areas. Since all interactions between explorers were repulsive
and none were attractive, I guaranteed that explorers would try to spread themselves as thinly as possible
to cover the greatest possible area of the map.

One might wonder why I chose to compute the distance to the nearest unexplored location and repel
selectively, rather than simply allowing all of the explorers to repel uniformly. Consider if my opponent

12

Figure 6: Exploration was absolutely essential for the collection of information regarding neutral ECs.

actively attempted to prevent me from exploring some area of the map. The only feasible and effective way
to do this was to empower many politicians to remove or convert my many explorers which approached this
area. As discussed in Section 2.4, this was highly a costly trade for my opponent, so it made sense that
I would want to make these trades as rapidly as possible, as they were generally to my advantage, and to
do so, all of my explorers should best disregard explorer density gradients and travel directly towards the
nearest unexplored area which the opponent attempted to restrict, where my explorers were subsequently
traded away by my opponent’s empowerment. This produced much more rapid trading than if my explorers
were to direct themselves towards the restricted area through explorer density gradients, as large numbers of
units were required to produce significant explorer density gradients, holding up extra unit count which was
not available for trading at a time when such trading was much to my advantage. An important scenario
which arose often was when my opponent attempted to defend a group of slanderers by preventing me from
exploring near them, and in this situation it was evidently crucial that my forceful exploration of their
territory strained their defense effort as much as possible, as I required my muckrakers to find and expose
their slanderers to halt or slow their exponentially growing economy as quickly as possible.

4.2 Slanderer Lattice

Since slanderers had to be be kept safe at all times from exposure to muckrakers, it was beneficial for them
not to wander and to remain in one place at all times, so that they would be less likely to encounter opponent

13

muckraker and be exposed. On the other hand, exploration was incredibly important, and slanderers could
serve as extremely quick explorers in the opening of the game since they did not spawn with a cooldown
like the other units. Ultimately after experimenting with both options, I decided that it would be best for
slanderers to remain in their place, as the conviction which they produced often outweighed their exploratory
capabilities. Although I could simply instruct the slanderers to never move, this would immediately cause
congestion as the area nearby my ECs would quickly become filled with slanderers, preventing my ECs from
spawning any more units. I therefore needed a way to “store” large numbers of slanderers in place, while still
allowing units to travel where they needed to go, and thus I chose to create a “slanderer lattice”. This featured
a checkerboard pattern of “storage tiles” alternating with “outgoing tiles”; slanderers would stand still and
wait on storage tiles if possible, and otherwise they would travel away from the EC somewhat randomly
amongst the outgoing tiles until they reached a storage tile on which they could stand and wait. Since the
outgoing tiles were sufficiently well-connected (because units could move diagonally), congestion near the EC
was generally avoided as units could move out of the way of each other sufficiently rapidly. Other versions of
slanderer lattice which I developed also featured “ingoing tiles” to facilitate unit movement directed towards
and away from the central EC at the same time, while still allowing for storage locations, but this lattice
structure required more space and therefore more map control in order to not congest, especially on maps
with low passability or map edges near my EC, so I did not use those versions of lattice for my final code
submission.

4.3 Buriers

As described in Section 2.2, a crucial strategy in the slanderer-free game was to completely envelop or “bury”
the opponent’s EC in units, such that it could not spawn units on any tiles. To do this, I implemented a
role called a “burier”, whose job was to travel to and stand on any tile adjacent to the cluster of opponent
units surrounding their EC. Using a bury sensing algorithm as described in Section 3.6, I ensured that in the
successfully buried state, each burier knew that if it was part of the stationary layer of units surrounding the
opponent cluster, it would stay still, and otherwise it would change roles to become an explorer. Furthermore,
if any explorer saw a non-friendly EC with no buriers burying it or one of those buriers signalled on its flag
that the EC has not yet been completely buried, it too would change roles to become a burier, to help
contribute to the burying effort which the opponent may be actively attempting to resist. Lastly, buriers
always judged neutral ECs as completely buried, so that they would not take up unit count by signalling for
other units to come help to bury the neutral EC. In effect, this always left one burier near the neutral EC
who would not leave to explore because it saw no other buriers burying the EC, thinking the EC had gone
unnoticed. Although unintended, this turned out to be greatly beneficial because this burier would often be
able to micro to greatly dilute the empower conviction of any opponent politician who attempted to convert
the neutral EC, causing the conversion to fail, after which another single burier would come to replace the
first one, and could do the same, massively delaying the opponent by causing the opponent to repeatedly
fail to convert the neutral EC.

4.4 Targetters

It was often the case that one of my ECs had vastly greater conviction than an opponent EC, and in this case
the best possible play was for my EC to send one or more politicians to opponent EC to empower and convert
it, spending enough conviction on my politician(s) to outstrip all of the conviction stored in the opponent
EC. Thus, I implemented a role called the “targetter” to represent the politicians sent for conversion, which
would specifically target and travel towards the coordinates of the opponent EC in question, rather than
(relatively) aimlessly exploring in order to find it. Buriers would signal on their flags the approximate
coordinates of the targetted EC as well as the conviction required to capture it, and my ECs would read the
flags to decide whether it had enough conviction to send a targetter to capture each non-friendly EC that it
was aware of. My ECs would communicate the role and target location during the initial cooldown period of
any targetter(s) which it built. Targetters also showed on their flags a “get out of the way” bit, which if set
to 1 when the targetter was experiencing congestion, would instruct friendly units and especially buriers to
move away from the targetter to give it some space to reach its target. The amount of conviction required
to capture an opponent EC was estimated by the buriers to be thrice the conviction of the EC added to

14

any conviction it would gain by the time the targetter reached the EC, as estimated by the distance to the
friendly EC. This was under the assumption that the targetter’s empower conviction would be diluted by
no more than two other units when it attempted to convert the EC, due to congestion by friendly buriers
as well as micro by the opponent. Each of my ECs would send at most 1 targetter at a time for each target
EC, and would send another if the first one was unsuccessful.

4.5 Guards

To defend slanderers, I needed to be able to remove any opponent muckrakers which came too close to my
slanderer lattices and threatened to expose them, but at the same time, I had to spend the least amount of
conviction possible on defense, since defense was incredibly conviction-expensive as I was constantly offering
favorable trades for the opponent. Taking inspiration from the turtle strategy of babyducks, I opted to
produce sparse layers of “guard” politicians to surround my EC and the slanderers which it produced, which
would empower to remove any nearby muckrakers. These guards would use a distributed Bellman-Ford
algorithm as described in Section 3.2 to determine the number of layers of guards separating themselves
from the protected EC and slanderers. They would compute their distance to the previous layer, repelling
from it if they got too close and attracting if they got too far, and would always repel from other guards in
the same layer, ignoring guards of the next layer and beyond. This allowed the guards to spread themselves
into sparse yet uniformly thick defensive layers surrounding the protected EC and slanderers, covering as
much of the perimeter as possible with the least possible number of guards, each of them taking up valuable
conviction to build. Later, I noticed that this guard strategy could be even further improved. Instead of
maintaining a layer of guards which held up a large amount of conviction that could have been spent on
slanderers, I used my explorers’ flags to communicate to the EC the position and size of every approaching
muckraker, and built a specific guard specialized to travel to and remove each and every one of them, much
like how I used targetters to convert ECs. Any guard which “missed” its target for one reason or another
would revert to the sparse layer defense strategy, and another guard could be built and sent to account for
the missed muckraker if necessary. This way, every opponent muckraker would be accounted for, and yet
almost no more conviction than absolutely necessary would be spent to defend my slanderers, saving more
conviction to be spent elsewhere.

1' 1'
S

W

Figure 7: A slanderer lattice, with newly built guards in the center ready to traverse through the lattice to
reach their targets.

15

5 Micro/Macro Pipeline
5.1 Units

My units typically made decisions in two steps: the “micro” step and the “macro” step. The micro step
was dedicated to choices which would incur an immediate effect in one round, while the macro step handled
all other strategies. In the micro step, I found the largest nearby politician regardless of team, and then
used the minimaxxer algorithm described in Section 3.5 to compute the minimaxxed effective net conviction
gains for my team with respect to the politician’s choice of empowerment for every direction that my unit
could move in. If my unit was a politician, I also used the optimal empower radius algorithm described in
Section 3.4 to compute the gains for if my politician chose to empower. I then chose to perform the action
which maximized the calculated gains.* If there was a tie between multiple move directions (which occured
in most cases), then all of the best move directions were fed to the macro step, which chose one of these move
directions. This ensured that my units always prioritized actions which urgently, clearly, and immediately
produced gains or prevent opponent gains, and only afterwards did they consider taking actions to encourage
more unpredictable longer-term gains.

During the macro step, only the set of best possible move directions which tied in the micro step was
considered. The role which the unit played determined where the unit wanted like to travel and for what
reason. This information was then passed to a short-distance greedy pathfinding algorithm which decided
which of the available moves led the unit to its destination in the fastest manner.

5.2 Enlightenment Centers

My enlightenment centers operated by choosing what to build on a list of options sorted by decreasing
priority: first guards, then targetters, then “unburying politicians”, then slanderers, then explorers. For
the first three options, the EC built as close as possible to the intended target, so that less distance was
traversed to reach the target, which on high-passability maps could make as much as a 30 round difference
in traversal time. The “unburying politician” was simply a small politician intended to empower to remove
multiple of the opponent’s burying units. This was only done if enough units were present to slow my EC’s
build rate below its calculated default rate, which varied by map. Cheap explorers were always built as close
as possible to the largest nearby opponent politician, to increase the chances that the newly built explorer
would dilute the politician’s empower conviction in case it attempted to convert my EC. The reason that
targetters were deemed to be more important than unburying politicians was because oftentimes while an
opponent attempted to bury my EC, it was possible for my targetter to sneak out and convert the opponent’s
EC, which replaced the advantage lost through my own EC being buried, completely defeating the purpose
of my opponent’s burying effort. This idea was taken with inspiration from the team Bytecode Mafia,
which sometimes thwarted my burying rushes by sneaking large politicians out like such. All units except
for explorers were also barred from being built if building them would result in nearby opponent politicians
having enough total conviction to convert my EC.

Since ECs were the only robot that could build units for all the various roles, I let my ECs manage the
large scale, long-term economic and strategical decisions of the game. By using explorer flags to measure the
approximate distance to the opponent, my EC could judge whether an early burying rush would be feasible,
in which case it needed to capture neutral ECs as early as possible. To save as much economic currency as
possible, I only chose to build guards if there was a large enough income from slanderers worth defending,
and only chose to build slanderers if opponent muckrakers were far enough away that defense would not
likely be too taxing. This allowed my ECs to switch between the rush and turtle strategies multiple times in
during a heated match, whenever it deemed that doing so would be approximately economically favorable.
One caveat of this was that when I finished burying the ECs of a team like Blue Dragon, they would leave
many muckrakers around preventing my ECs from switching to the turtle strategy, but would also leave a
large amount of conviction in their ECs to prevent me from capturing them. As they had a better voting
strategy than me and our incomes were proportional, they could buy the votes more efficiently than me and

4I had to include a special case here to disallow politicians to empower and waste their conviction purely to prevent being
converted by an opponent politician. If I hadn’t done this, opponent politicians of the right size could have simply walked
among my own politicians, repeatedly causing them all to empower and waste conviction and unit count, at no cost to the
opponent.

16

win by vote despite my complete control over all the other currencies of the game. To handle this, I had
to include a special case to override and force a turtle strategy iff the local explorers signalled the nearest
unexplored location to be very far away, i.e. the whole map was not only explored, but somewhat densely
filled with explorers too, which could only happen if I had full control as the explorers try to spread. This
would allow me to buy most of the votes remaining using a growing slanderer economy and win by vote.
The team Nikola was still able to overcome this special case, by ensuring that the muckrakers left behind
after burying were large enough to be too expensive for me to remove, so that my ECs could never begin
building slanderers whose income was needed to buy the votes.

On a sidenote, since all my units required an exchange rate estimate to properly operate their minimaxxer
algorithms, I used my ECs to calculate an estimated exchange rate before sending it through flags to all the
units for their own use.” While in hindsight a dynamically tuned exchange rate would lead to much more
efficient and exploitative trading, I simply used a linear function of my ECs’ total income per round, which
was sufficient for fairly strong performance because most other teams did not make use of exchange rates
anyways.

6 Timeline and the Meta

The “meta” is a common term when discussing popular games which refers to the typical strategy played.
The meta tends to vary throughout classes of player strengths, and evolves as players learn over time. This
is definitely the case for Battlecode 2021. In this section, I outline major events in chronological order such
as developments in the meta, developments in my own code, and significant changes to the game rules.

6.1 Week 1

The first week of Battlecode is always the week in which teams learn the details of the game and how they
enable certain strategies. During this time, the game typically undergoes many balancing changes and bug
fixes as players spot loopholes in the game rules. This year, it was noticed that the exposure of slanderers
often led to exponentially large empower buffs already capable of overflowing integers within the first tenth
of the duration of the game. Teh Devs patched this within the first few days by decreasing the base of the
exponential buff tenfold, but it soon became clear that this was not enough. Right before the first sprint
tournament, they patched this issue again by capping all buffs and convictions to a maximum value, finally
stopping competitors from being able to break the game.

Due to the game being somewhat unplayable for the duration of the first week, I restricted myself to the
development of highly general algorithms and techniques which could be used later on in the competition, so
that the first week’s worth of time would not be wasted. Things I developed included the distributed Bellman-
Ford algorithm (Section 3.2), basic uniform-repulsion exploration code (Section 4.1), various versions of
slanderer lattice (Section 4.2), burier code (Sections 4.3 and 3.6), and communication code (Section 3.7). I
also developed some techniques which were not included in my final submission:

e Relay Chain: Instead of repelling from explorers at least as far from the target as itself, an explorer
would instead attract to explorers closer to the target than itself. This caused explorers to form
long chains which led them all towards one global target through the fastest paths possible, easily
overwhelming whatever was being targetted through sheer numbers of explorers. Explorers which did
not see any other explorer to relay the target information to would travel back to their home ECs
in search of other explorers to notify of the target, so that every explorer would know where to go.
Additional features included an imitation of “tension” which would allow the chains to straighten
over time, shortening distance travelled as much as possible. I later removed the relay chain behavior
because it would cause my explorers to have trouble splitting their focus to target multiple locations
at once.

e Membrane: This was an early variant of my guard role, which consisted of many low-cost units
that formed an impassable barrier around guarded units by intentional congestion, rather than by

5The resulting mysterious flag behavior tended to garner the curious attention of other strong teams such as 3 Musketeers.
I was eager to explain what my flags represented and how they worked.

17

Figure 8: A spiral shaped relay chain leading away from my EC.

empowerment. The congestion was carefully controlled such that the membrane was permeable to
only friendly units and could expand and contract whenever the membrane contents did the same.

During this first week, I developed a strategy involving a burying muckraker rush which switched to a
turtle with a slanderer lattice surrounded by a membrane at the 1000th round, implicitly assuming that the
opponent had been buried by then. My slanderer lattice featured ingoing and outgoing tiles as well as storage
tiles, and used a slow doubling growth strategy as explained in Section 2.3, which enabled my EC and each
slanderer to reach over 10° conviction by the end of the game, at which point I would build many gigantic
politicians of a special “exterminator” role to convert and remove any remaining opponent robots to win. I
had not yet learned the economics required for the optimal empower radius or minimaxxer algorithms yet,
so my micro was much worse than in my final submission, but still strong enough for me to successfully bury
most players at the time. I submitted the code for this strategy a day or two before the Sprint 1 tournament
to allow time for debugging by testing against other teams through Battlecode scrimmages.

6.2 Sprint 1

The Sprint 1 tournament occurred after the first week of Battlecode with the purpose of allowing competitors
to see and test the early meta of the game, so that they could more easily make informed strategic decisions
for the future. The tournament format was single elimination, meaning any team which lost once would be
eliminated immediately. At the time, my team had risen to the 13th rank on the scrimmage server, whose
purpose was to automatically rank teams through the Elo system by running games, and thus I recieved the
13th seed for the tournament. Although I did win my first matchup 3-0, I lost my second 1-2, because my
ECs had built so many explorers that the whole map would become congested and my exterminators could
not reach my opponent.

It turned out that many teams that did well, including the Sprint 1 winner Super Cow Powers, tended
to build slanderers and large politicians in attempt to outstrip the opponent EC’s conviction and convert it,
and this formed the early meta of the game.

18

Figure 9: A large slanderer lattice protected by a membrane.

6.3 Week 2

Right after the submission deadline for the Sprint 1 tournament, I began developing a completely new set
of code based on new principles, only ever referring back to my Sprint 1 code to use as an opponent while
testing, because of an impending rule change by Teh Devs which halved the number of rounds in the game.
I believed that this would make my strategy non-viable since the slow exponential growth technique which I
required would not produce enough conviction in time for me to be able to end the game by extermination.
My refusal to modify my Sprint 1 code during my development of my new code led to me losing every game
as a result of the rule change, and my team plummetted far down the scrimmage rankings to nearly the 150th
rank, though I knew I would make it back up once I finished and submitted my next strategy. Motivated
by the abundance of unprotected slanderers that I saw many of my opponents building, I believed that my
optimal strategy should be primarily to exploit such blunders, using the following technique:

e Self-empower: Upon recieving an empower buff as a result of exposing my opponent’s slanderers,
my ECs would spend all of their conviction on politicians, which would then immediately empower,
multiplying my ECs’ conviction by the empower buff. If done at maximum speed, this could be
repeated five times before the empower buff expired. Oftentimes, I was able to expose more than
enough slanderers over time to raise my ECs’ conviction to the game’s conviction cap, if not far above
the opponent’s own total conviction, which gave me a sure victory as I spent my plentiful conviction
on exterminators.

At this point, controversy had been brewing amongst the competitors about whether this technique was an
intended feature from Teh Devs, and whether it should be removed from the game and how so. In my
eyes though, this was an issue to be dealt with later once Teh Devs had provided some clarification; the
current rules of the game made the risk of opponent self-empowerment too great for the use of any slanderers,
and I thought that no player should ever build slanderers as a result. Furthermore after having thought
about some discussion I saw on the Battlecode Discord server mentioning that unit count was an essential
resource, | fleshed out the economic theory of the game as described in Section 2.2, culminating with my

19

development of all the roles and the optimal empower radius and minimaxxer algorithms in Sections 3.4 and
3.5, drastically improving my micro to the point where I would easily beat my old bot’s micro every time.
These developments concluded with my choice to perform my signature muckraker rush every single time,
and to punish any opponents who built slanderers through self-empowerment.

Meanwhile, the top team babyducks had introduced a radical new strategy to the game: the slanderer
turtle, featuring many slanderers encircled by politicians which empowered to protect from exposure by
opponent muckrakers. Its success quickly inspired many other teams to replicate this strategy, and by the
end of week 2, the majority of top teams used some variant of it, and turtles became the meta. Some turtles
would send gigantic muckrakers (known by competitors as “buff mucks” or “buffrakers”) to disorient the
defenses of other turtles. The team California Roll (Chop Suey) even sent muckrakers around the edges
of the map to “muck flank” other turtles which featured directionally biased defenses, an idea which won the
surprise Adaptive Strategy Award. Seemingly, my muckraker rush would be completely at odds with the
dominant popular strategies of the game, and one would likely prevail, though I wasn’t sure which it would
be.

Again, several days before the Sprint 2 tournament, I uploaded my strategy for testing and debugging
until the deadline. However since I was severely underranked this time, I had to test purely by requesting
scrimmages against high-ranked teams with the autoaccept scrimmages option on,® as my new strategy
demolished the locally ranked competition. By the time all scrimmages were stopped for the tournament to
run, I still had not been able to remotely find the approximate ranking of my new strategy through requested
scrimmages.

6.4 Sprint 2

In a similar manner to the Sprint 1 tournament, the Sprint 2 tournament was single elimination, and occurred
after the second week of Battlecode with the purpose of allowing competitors to see how the meta of the
game had developed, so that they could more easily make informed strategic decisions for the future. Though
I entered the tournament as the 132nd seed, I was flying blind as I had no clue what my true ranking was.
While I won my first matchup 3-0 against a 100+ seeded team, I was shocked to find that my second
opponent was the mighty team Super Cow Powers, winner of Sprint 1, which then went on to clear the
entire bracket to become the winner of Sprint 2 as well. Though I had been immediately defeated as a result
of my unpredictable ranking, I was also pleasantly surprised to find that I had won my first game due to
self-empowerment and lost the next two, losing the best of three. It also turned out that my second game
was lost largely by my EC’s failure to recognize the opportunity to self-empower, as it saw a few units which
could potentially dilute the empowerment, but I hadn’t programmed it to recognize that these units could
not dilute it enough. Clearly, I still had much work to do, but my close match against Super Cow Powers
really solidified my confidence in my muckraker rush, which I continued to use for the rest of Battlecode
2021.

As expected from the meta developments during week 2, most of the top teams in Sprint 2 implemented
a slanderer turtle, with the occasional buff muck and muck flank thrown in, with the notable exception of
the team java :ghosthug: which also performed a muckraker burying rush. The meta remained this way
throughout the rest of Battlecode.

6.5 Week 3

As my rating began its long climb from the depths, discourse of the self-empower technique became more
heated, with many players pressuring Teh Devs to change the rules of the game, since self-empowerment
caused games involving turtles to swing very easily, while other players (including myself) expressed aversion
to such a drastic rule change this late into the game. After several days of careful deliberation, Teh Devs
decided to massively reduce the effect of the exposure buff through multiple changes, most notably by
disabling buffs applied to friendly ECs, rendering self-empowerment useless. At the time, I had finally
risen to the 12th rank, when my primary weapon against all the teams near me had been obsolesced, and
I fully expected my rank to plummet back down again, as this was the second time that a rule change
would force me to completely rethink my strategy. Instead, I was astonished to see my ranking continue

6Such teams were sometimes difficult to find; many top teams turned the option off to avoid being flooded with scrimmages.

20

to climb, eventually peaking at 4th at one point. Seeking an explanation, I learned that most top turtles
operated under the assumption that their turtle was worth protecting, and thus attempted to defend until
they had enough defense built up to support slanderers, consequently using up all their unit count on
defense against my burying rushes regardless of whether it would work for them or not. I then drained the
opponent of conviction since defense was expensive, rather than by boosting my own conviction through
self-empowerment, leading to the same winning outcome as before. This change in my understanding of the
game compounded with the observation that I tended to do better on smaller open maps then grew into the
economic theory described in Section 2.4. While I had learned that my pure muckraker rush still worked
extremely well on small maps, some teams began to learn not to waste conviction on defenses while facing
my muckraker rush, with team Blue Dragon paying the saved conviction on votes, forcing me to abandon
my “exterminator” role, to turtle after burying to gain a conviction advantage, and to drive vote prices high
enough to win by vote myself, and team BattlePath paying the saved conviction on large politicians to
convert the remainder of my ECs, to which the economic theory suggested my rush could have no winning
response at all. Other teams like monky began to fortify and improve their politician defenses, to the
point that they could defeat my rush every time on medium to large size maps and any maps with lots of
high-passability tiles. Strained, I even tried instructing my slanderers to perform exploration as well, trying
to squeeze every bit of unit count out of early converted ECs that I could. Clearly I could not muckraker
rush every single time if I was to continue as a top team for long, but with the big US Qualifying Tournament
fast approaching, any major change to my strategy would be untested, and too risky to implement in time,
and so I submitted my last pure muckraker rush strategy for the Qualifiers.

6.6 US Qualifiers

The purpose of the US Qualifying Tournament was to choose 12 US-based teams to compete in the Final
Tournament. It used a best of 5 double elimination format, meaning any team which lost once would be
moved from the winners bracket to the losers bracket, and any team which lost in the losers bracket would
be eliminated. I was seeded 8th, and had to either win my first 3 matches or only lose once out of my first
5-6 matches (depending on when I lost my first match) in order to qualify for the Finals, and to my horror,
the maps for this tournament leaned far towards the larger side. While I won my first two 5-0 and 4-1, my
third opponent was the 9th seeded 3 Musketeers, who I lost to 4-1. Luckily, I managed to win my next
two matches 5-0 and 3-2 in the losers bracket, qualifying me for the Final Tournament. My final 3-2 victory
against the formidable Dis Team was extremely close, with Dis Team’s turtle pulling ahead of my rush
with a 24x influence lead over me on one of the large maps, but my strong micro slowly but successfully
trading it all away at their defenses to produce one of my three wins; I was at their mercy and it could have
very easily gone the other way.

6.7 Final Half-Week

During this final period, qualifying teams (US and international) finished developing their code for the final
tournament. As I knew the other teams would be hardening their defenses during this time, I took a big risk
and quickly coded up a brand new turtle strategy with a guard targetting system as described in Section
4.5, so that I’d at least have a chance on large low-passability maps. To retain all the work I had done on my
rush, I let my ECs dynamically transition between rushing and turtling depending on context, betting that
I’'d be nimble enough to still overwhelm the opponent with my rush on small maps, and yet turtle harder
than my opponent on larger maps. Luckily, this turned out to be successful as my new dynamic strategy
stood firmly against several turtling teams which had dominated my pure rushing strategy in the past.

6.8 Final Tournament

The Final Tournament took place among the top 12 US teams and the top 4 international teams, and was
double elimination format, featuring mostly large maps. Almost all of the maps featured ECs placed on
low-passability tiles, decreasing their default build rate, and many teams were blindsided by this as every
map that had been previously used only included ECs on maximum-passability tiles;” teams did not know

7with the exception of maptestsmall

21

how their code would handle this, making the results of the tournament more unpredictable. I recieved the
11th seed for the tournament, as barely any ranked matches were set up to stablize the rankings of any
strategies which had been changed. In chronological order, I played against:

6th seeded babyducks, where I won 3-2,

3rd seeded Kryptonite, where I lost 2-3,

9th seeded confused, where I won 4-1,

7th seeded monky, where I lost 2-3.

finally putting me in seventh place this year, tied with team Nikola. After being placed in the losers
bracket, babyducks continued on an incredible 8-match win streak, ultimately defeating team Producing
Perfection, the champion of the winners bracket—twice in a row—to win the final tournament.

7 Special Acknowledgements

In addition to all the previously mentioned teams, I would like to thank teams monky and 3 Musketeers
for the constant challenge of their strong defenses that they allowed me to freely play against (by keeping
the auto-accept scrimmages on). I tested my strategies against them very often, and they were instrumental
in the development of my code.

I would like to congratulate team babyducks for winning the final tournament, team Super Cow
Powers for winning both sprint tournaments, and additionally teams Producing Perfection and Malott
Fat Cats, since all four of them held the highest elo score on the Battlecode 2021 scrimmage rankings for
long periods of time.

A special thanks to [California Roll (Chop Suey)] stonet2000 for developing a more detailed Bat-
tlecode 2021 game visualizer, which in addition to the already shown, displayed the size of robots and an
income graph to help competitors more easily view this essential game information.

Thanks to [Soju] cyberwind for creating and sharing a graph of squared euclidean distances of lattice
points, which I referred to very often while developing my code.

And finally, a big thanks to Teh Devs for all the time and hard work they put into developing and
maintaining such a great game and competition every year, and to the sponsors for supporting and making
it all possible.

22

	Competition Game Rules
	Robots
	General Principles

	Theoretical Strategy
	Economy
	Slanderer-Free Trading
	Slanderers
	Trading with Slanderers

	Algorithms
	Reversed For Loop
	Distributed Bellman-Ford Algorithm
	Integer Cycler
	Optimal Empower Radius
	Minimax Move Direction
	Bury Sensing
	Communication

	Strategy Implementation
	Explorers
	Slanderer Lattice
	Buriers
	Targetters
	Guards

	Micro/Macro Pipeline
	Units
	Enlightenment Centers

	Timeline and the Meta
	Week 1
	Sprint 1
	Week 2
	Sprint 2
	Week 3
	US Qualifiers
	Final Half-Week
	Final Tournament

	Special Acknowledgements

