
4 Musketeers - Battlecode 2023 Strategy Guide

Winston Cheung, Maxwell Jones, David Lyons, Bharath Sreenivas

February 2023

Contents

1 Introduction 2
1.1 Battlecode Introduction . 2
1.2 Team Introduction . 2
1.3 Game Overview . 2

2 Strategy Development 4
2.1 Coordination . 4

2.1.1 The Sector System . 4
2.1.2 Movement . 4

2.2 Communication . 5
2.2.1 The Database . 5
2.2.2 Reporting . 6

2.3 The Opening Act . 7
2.3.1 Early Strategies . 7
2.3.2 Micro (Unit Management) . 8
2.3.3 Macro (Resource Management) . 9

2.4 Winston Wonderland . 9
2.4.1 Balance Changes . 10
2.4.2 Adding Nuance . 10
2.4.3 Testing Versions Efficiently . 11

2.5 The Cheung Dynasty . 11
2.5.1 Tragedy Struck . 12
2.5.2 Healing . 12
2.5.3 Elixir . 13
2.5.4 Final Carrier Changes . 14
2.5.5 Final Launcher Changes . 15

3 Final Thoughts 16
3.1 This Year’s Game . 16
3.2 David’s Reflection . 16
3.3 Maxwell’s Reflection . 17
3.4 Winston’s Reflection . 18
3.5 Bharath’s Reflection . 18

1

4 Musketeers - Battlecode 2023 Strategy Guide

1 Introduction

1.1 Battlecode Introduction

Battlecode is an AI competition run every year throughout the month of January. At the
beginning of the month, MIT releases a new 2 player real-time strategy game, and teams
code up a bot that plays said game. There are two sprint tournaments, a qualifier where the
top 16 are chosen, and a final where the top 16 battle it out for cash prizes.

1.2 Team Introduction

All of us are computer science students in our Senior year at Carnegie Mellon University. Our
first year, the original team when created didn’t have Winston, so we named ourselves the
3 Musketeers. When Winston joined about a week into the competition, our name suffered
from an off-by-one error. Continuing that trend the next year, we became the 5 Musketeers.
This year we finally counted correctly and dubbed ourselves the 4 Musketeers. This was
our third year doing Battlecode after qualifying for finals two years in a row, so we came in
this time with heavy expectations. Just like last year, this year’s competition coincided with
school and posed a big challenge, but this year was even crazier, with ranked scrimmage
requests and a mystery tournament. Nonetheless, we managed to three-peat and make finals
once again, and this strategy guide will explain the road to get there. Our code is linked
here, with our final player here. We link the relevant commits throughout, but it also may be
useful to see the final player, as some strategies and scripts mentioned were slightly changed
and improved before our last submission.

1.3 Game Overview

Battlecode is now a cinematic universe with a timeline and everything. Battlecode 2022
was about a post-apocalyptic world using mutation and alchemy, and Battlecode 2023 is
about how such meddling destroyed the fabric of reality, forcing people to open portals to
new universes and use their beautiful sky islands and time-bending tempests to save their
universe. However, apparently other universes were also full of idiots messing with alchemy
and are trying to do the exact same thing, so you have to fight for the right to claim this
new territory and save your universe.

https://github.com/maxwelljones14/Battlecode2023
https://github.com/maxwelljones14/BattleCode2023/tree/main/src/MPWorking

4 Musketeers - Battlecode 2023 Strategy Guide

Each team gets 1-4 headquarters, and each map has a bunch of sky islands. There are
three main resources: adamantium, mana, and elixir . There are adamantium and mana
wells scattered throughout the map, but in order to create an elixir well, you need to put
adamantium into a mana well, or vice versa. All three resources are useful for building robots
and building anchors to seize control of the sky islands. There were two ways to win:

• Capture 75% of the sky islands on the map to win immediately, or at least more than
the other team by the end of the game.

• After 2000 rounds, a tiebreaker goes to the team with elxir, then mana, and finally
adamantium.

The rectangular map could be as small as 20x20 or as large as 60x60. Any square could
have one of three obstacles:

• Walls: Unlike previous years, where rubble controlled how long it took to pass through
squares, this year had walls that you can’t get through at all. This made many maps
a tough pathfinding challenge.

• Currents: If you’re on a square, and that square has a current pointing to another
square, you will move in that direction at the end of the turn.

• Clouds: The fluffiness of clouds obscures vision even though these are robots. If you’re
in a cloud, your vision radius is decreased. If you’re not in a cloud, you can only see
things inside a cloud that are within that same decreased vision radius.

There were five different units this year:

• Launchers: These are the main attacking units. They cost some mana and deal a
decent amount of damage. Very similar to the soldiers from last year.

4 Musketeers - Battlecode 2023 Strategy Guide

• Carriers: These are the main mining units. They cost some adamantium, can extract
resources from wells, and can bring those resources back to the headquarters. They
also carry anchors to sky islands and can throw their resources to deal damage.

• Amplifiers: Communication was different this year, and you could only communicate
if you are close to your headquarters, close to an island you own, or close to an amplifier.
Thus, you can use both mana and adamantium to create amplifiers that make it easier
for your robots to communicate.

• Destabilizers and Boosters: Destabilizers cost a lot of elixir, but if you can acquire
one, they can be invaluable to winning skirmishes. They deal AOE damage and slow
down time, making everything in their blast range have longer cooldowns. Boosters
were the exact opposite, speeding up time and decreasing cooldowns.

2 Strategy Development

2.1 Coordination

2.1.1 The Sector System

Last year, we used a clustering system where we kept track of average enemy locations and
made all our choices based on how close we were to those clusters. This year, we decided
to finally move on from a cluster system to a sector system, in which you divide the map
into several small sectors and keep track of information for each sector. This is important
because then, rather than saying an enemy HQ is some map location, which takes up 12
bits, you can say the enemy HQ is in some sector, which takes up 7. The idea is to send
units to that general location, and then once they’re there, they can see the sector in their
vision radius and make any remaining decisions. With respect to sectors, we wanted to keep
track of two kinds of information. First, for each sector, we want to keep track of some basic
information about it. Second, globally, we want to keep a list of sectors that might be useful
for some purpose, like a list of sectors with lots of enemies or a list of sectors that need to
be explored.

2.1.2 Movement

Our movement started off with some classic unrolled greedy BFS popularized byXSquare, a
past finalist, sprint winner, and overall genius of Battlecode. It works by a using a relaxation
of general BFS that only considers paths which go strictly away from the center. The key to
its efficiency is that this BFS uses a large amount of constants and if statements to perform
computation in as little bytecode as possible, allowing for a larger area to searched through.
This initial BFS version didn’t take into account currents, but later in the tournament the
bot was updated with a BFS that respected currents. We also had multiple versions of this
BFS function that considered different areas to search, and we would use the largest possible
BFS area on a given turn that seemed possible to complete with the amount of bytecode the
robot had left.

https://github.com/maxwelljones14/BattleCode2023/commit/f9f91a5e45cd597030cc4ee1de202d2b4f36d2ac
https://github.com/IvanGeffner/BC22/blob/master/wammawink/BFSDroid.java
https://github.com/maxwelljones14/BattleCode2023/commit/354b0a316faced6069ea0d6abceb7e28a59127ab

4 Musketeers - Battlecode 2023 Strategy Guide

In addition to this BFS, we used Bug Navigation (Pathfinding.java file) when we hit
impassible squares, as that is the next best way to reach your goal when impeded. This
naive bug navigation was later updated into a much more complex version. At first, when
we haven’t seen the entirety of a wall structure, we would always turn in the same direction
in order to see the full wall before making a decision about how best to cross it in the future.
From here, we assume the obstacles are “nicely formed” and generally have only two “thorns,”
called points of interest in code. Nicely formed obstacles are things like lines or L shapes,
which have two clearly defined endpoints. Squares also count, which are uniform enough
such that an assumption of two POIs is sufficiently accurate. We make the assumption that,
in order to path around an obstacle, we have to path to at least one of these endpoints
first, from which we can then continue on to the actual target. We represent the obstacle
(a contiguous set of walls) as a graph and try to find its diameter. The formal double BFS
algorithm only works for tree graphs, but since we’re assuming “nice” obstacles (boy, did the
devs love messing with this assumption), this actually gives us a good enough approximation
for Battlecode. To calculate the correct direction, we save the distances of each point on the
obstacle to the two POIs and choose to follow the direction which has the smaller combined
total of the BFS distance to the POI and the POI dist to the target. Performing all of the
BFS is often too expensive to do in one turn, so it’s distributed over several instead. An
obstacle of around 20 walls generally takes around 15000 bytecode to finish, so if we use our
spare bytecode at the end of each turn to work on the computation, it can finish in about 3
turns. Once we’ve finished, we can then use our knowledge of the points of interest to always
find the correct turning direction whenever we need to go around it. See here for the actual
code.

2.2 Communication

2.2.1 The Database

Communication was very difficult this year. Just like last year, there’s a single global array
rather than a flag for each unit, but unlike last year, you can’t write to the global array
whenever you want. You can read from it, but you can only write to it when in range. This
meant that each robot needed to keep track of much more information. Previously, whenever
a robot sees something, it can forget about it next turn because it’s already reported it. But
now, a robot could potentially see 100 rounds worth of information across dozens of sectors
without ever being able to report it. In previous years, we could get away with a robot
storing a few variables and sets like a home location and a list of nearby enemies, but now,
we needed a full-blown database.

We created a SectorInfo class that stores information about a sector. A well, an island,
an enemy...really anything interesting. The database is a list of SectorInfos. Anytime a
robot sees something in a sector, it records an entry in its database for that sector. And we
keep track of the exact map location and who owns the island or what kind of well it is also.
Unlike the global array, which has limited bits, individual units have plenty of space. We can
store exact information and filter it later so that we don’t accidentally record the same thing
twice. For example, say that there’s a neutral island that gets taken over by the enemy. By
storing detailed information in our database, rather than thinking there are two islands, one

https://github.com/maxwelljones14/BattleCode2023/commit/ffee844b81dda33293f619cd8aa397fd68569c77
https://github.com/maxwelljones14/BattleCode2023/commit/915d24d20d0a1edacdfb0d3c6af1b03297d6c1f5
https://github.com/maxwelljones14/BattleCode2023/blob/main/src/MPWorking/MapTracker.java
https://github.com/maxwelljones14/BattleCode2023/commit/b30dbf426e78fa4f96a7aa7a09d39e737f882faf

4 Musketeers - Battlecode 2023 Strategy Guide

neutral and one enemy, we’d know that the neutral island had been taken over and replace
the entry. Then, when a robot is able to finally write to the global array, it uses its database
to update the information. This approach was effective, but unfortunately, it was a lot of
bytecode to initialize the entire database. Thus, we opted for a lazy initialization, in which
the SectorInfos are NULL unless we have something to record. However, to avoid having
NULL checks literally everywhere in our code, we create a separate SectorDatabase class
with .at() wrapper functions.

2.2.2 Reporting

There was one downside of switching to the sector system, which is that describing the
sectors themselves takes a lot of bits, maybe 12 per sector. Each entry in the global array
is 16 bits, which is enough space for a sector. Are there enough bits overall to store all the
sectors? Yes. Are there enough entries in the array to store one sector per entry? No. If
your sector takes up 12 bits, then you better use those remaining 4 bits to store part of the
next sector. In previous years we were able to manually write Comms code, but this kind of
bit packing required an automated approach. Otherwise, changing something in the middle
would create days worth of side effects to fix. Thus, we adapted smite’s autogenerated
Comms code from 2022 to maintain our sector system. This led to another problem, though:
write amplification. Let’s say that you want to write something to sector 1, and it’s on
indices 3 and 4. Then you want to write to sector 2, and it’s on indices 4 and 5. You’ve now
written to index 4 twice. And what if an index contains parts of three different things? A
write costs 100 bytecode, and the limit is 10000 per turn, so that’s significant. Apply that
to, say, 10 sectors? And suddenly you’re wasting half your turn on reporting. To fix this,
we applied the database systems concept of a buffer pool, where you have an intermediate
set of pages that you write to and then flush to disk, rather than writing everything to disk
since disk operations are expensive. Since a read is only a few bytecodes, we first read the
entire global array to a local copy. Then, we write everything to our local copy, setting dirty
flags. Finally, for each dirty index in the array, we flush it to the global array. Now, we
could effectively communicate.

https://github.com/maxwelljones14/BattleCode2023/commit/73fa9b3162b52844d9fdf2e0020e6ad528d8fec3
https://github.com/maxwelljones14/BattleCode2023/commit/2948404b255293e6b93e55ea5948a11c36d3105c
https://github.com/mvpatel2000/Battlecode2022/blob/main/scripts/generate_comms_handler.py
https://github.com/maxwelljones14/BattleCode2023/commit/c810da6f77edfd98d8c1c1b7e24c0bcc1f6f3e5f

4 Musketeers - Battlecode 2023 Strategy Guide

Figure 1: A carrier gets attacked by an enemy, so he goes back to his HQ to report.

2.3 The Opening Act

2.3.1 Early Strategies

As always, it pays to start small. Make carriers and launchers, and have them move basically
randomly. If a carrier sees a well, mine from it. If the carrier is full of resources, go home.
If we see an island, start building an anchor and take it to the island. Of course, since this
is our third year, we can start a little bit more complicated than that. Since launchers are
very similar to last year’s soldiers, we ported the soldier code over to the launcher code,
which has very well-tuned micromanagement. On a given turn, the launcher takes note of
the enemies it sees and their locations and health, the allies it sees and their locations and
health, and its own health. If there are more enemies than allies, we assume this is a fight
we can’t win and back up, attacking first if we can. We also do this if our health is critically
low. If we’re ready for a fight and we’re in action range, we attack and then back up so
that it’s harder for them to attack us. If we’re ready for a fight and we’re out of action
range, we move towards the enemy and attack. There were other basic changes we made
as well beyond the basic strategy. For starters, if there’s a well within vision radius of the
headquarters, we build carriers towards the well so that they can gather sooner. Further,
we made carriers better at surviving. Carriers are faster than launchers, but not if they’re
carrying resources. If a launcher is approaching, it might be game over for the carrier. If
the carrier can make it home to deposit its resources before dying, it does so. Otherwise, it
throw its resources at the enemy and then runs away, ensuring its survival so it can mine
more later. Finally, we knew from previous years to take advantage of symmetry. Based on
your HQ locations, you can guess the enemy HQ locations and move towards them to see if
you can find an HQ. Launchers, in particular, are very useful here because they can crowd
the HQ and kill anything that spawns, as well as block most of the spawn locations.

https://github.com/maxwelljones14/BattleCode2023/commit/ffee844b81dda33293f619cd8aa397fd68569c77
https://github.com/maxwelljones14/BattleCode2023/commit/98b0ddd717ad304816bd29e3a6427737e73941ae
https://github.com/maxwelljones14/BattleCode2023/commit/16c5cbe9dac7193c646a96b568fa16b087b0103f
https://github.com/maxwelljones14/BattleCode2023/commit/609207a3ef0961969be562cb581d1c1dadda82b9
https://github.com/maxwelljones14/BattleCode2023/commit/8b70ee119e34b29489b2cdaecba5556dc78e4ba1

4 Musketeers - Battlecode 2023 Strategy Guide

Figure 2: Soldiers crowd around a base and instantly kill the next spawn, and carriers
throw their cargo at enemies to survive.

2.3.2 Micro (Unit Management)

After Comms were finished, we could now have a much more nuanced strategy. In particular,
launchers and carriers no longer have to explore randomly. In our global array, we have a list
of combat sectors. When a launcher is deciding where to go, it can go to the nearest combat
sector and start battling, keeping the enemy from being able to expand their territory. If they
get to the combat sector, and it’s empty, they can go to the next one. Notably, since enemies
move, we reset that information every 100 (this number changed later) rounds, considering
it stale. The combat sectors are useful to carriers, too. If the carriers are going home to
deposit materials or report, and their home is in a combat sector, then they know they’ll
probably die on the way there. If we have multiple HQs, and there’s another one nearby
that’s not a combat sector, we can make that one our new home. We also have a list of
mining sectors, so the carriers know where to go to find the nearest well. They can also
loop through all the sectors and check to find which ones have adamantium or mana wells,
meaning that we can design carriers for a specific purpose. Finally, we have explore sectors,
which are the symmetry locations and any combat sectors that became stale so that units
know to check out the areas and see if there’s anything there.

In addition, we gave sectors a control status and claim status. We’d prefer to send our
carriers to wells without enemies than to wells with a lot of enemies, and the control status
makes that distinction. To facilitate this, if a carrier encounters an enemy and needs to run
away, we don’t just run away: we report. If a carrier encounters danger on the way to the
well and back, chances are the next carrier will have the same problem. Our priority is to
get home and relay this information as fast as possible. The claim status tells us that a
sector is being explored and that we don’t need to send anyone else there. Even without a
claim status, though, we make decisions based on what our other units are doing. If a carrier
reaches a well and it’s crowded, they find another well, and if a launcher finds an enemy HQ
and it’s crowded, they explore elsewhere. To avoid an oscillation problem where launchers
see that an HQ is crowded, step away, see that it’s no longer crowded, and step back, we
added timeouts so that we would avoid the definition of insanity and not try the same thing
twice expecting different results.

Besides Comms, there are some interesting micro decisions with respect to clouds and
currents. For currents, if they’re away from the direction we want to go, obviously we want

https://github.com/maxwelljones14/BattleCode2023/commit/d2c391a5f6afa25a09d5160bc942e33f03e38758
https://github.com/maxwelljones14/BattleCode2023/commit/9dfdc74112bc38a90fea1e28ab7f1ef480258659
https://github.com/maxwelljones14/BattleCode2023/commit/7501d27aef1c1d2d9d46b37c99f189a273f8c2ea
https://github.com/maxwelljones14/BattleCode2023/commit/fa24bc0be22df3cb34d91c067ef541c8c10b360a
https://github.com/maxwelljones14/BattleCode2023/commit/e3465cf07f32efbf14a63514d55d55cdd36cbfff
https://github.com/maxwelljones14/BattleCode2023/commit/92342b8aa3ef8508421f9a15cc69021a40fb3929
https://github.com/maxwelljones14/BattleCode2023/commit/68979c567e3e1bd303d22671a658fa295e219070
https://github.com/maxwelljones14/BattleCode2023/commit/67bf4328149122d8e3641d3f01b5d52854be978b
https://github.com/maxwelljones14/BattleCode2023/commit/9fa0a98a8d55c578a0222a7c3aa1b84a6c24b94c

4 Musketeers - Battlecode 2023 Strategy Guide

to avoid them, but if they’re in the direction we want to go, it’s not necessarily always good
to use them. If we’re really close to our destination, we might as well just finish rather than
use a current just in case it leads us into a ditch, as many maps did. For clouds, if we’re
near a cloud, and there’s no one else to attack, we might as well randomly attack the cloud,
as there might be an enemy hiding in there.

Figure 3: All of our launchers are randomly attacking clouds, and one of them manages to
hit an enemy.

2.3.3 Macro (Resource Management)

In the first few rounds, we want to just build 4 carriers and 4 launchers, since we don’t know
anything. By default, two of the carriers hunt adamantium, and two of the carriers hunt
mana. However, map size can change this. On small maps, it’s advantageous to rush the
enemy as quickly as possible, so all four of our carriers will go to the nearest mana well so
that we can build tons of launchers. Even on bigger maps, if we see a mana well right by
our HQ, we’ll prefer 3-1 in favor of mana. Rushing the enemy and owning the map can be
pivotal. Overall, we want about a 2-1 ratio of mana to adamantium so that our launchers
can take over the map, so when we create carriers, we decide which kind of carrier to make
them based on whether we’re overshooting or undershooting that golden ratio. When we
build the launchers, if the map is small, we want to build them towards the center of the
map so that we can get map control as quickly as possible.

2.4 Winston Wonderland

Since Battlecode started a week later this year, we had to go right back to school after
sprint 1. David had a compiler to implement, Bharath had dance practice, and Maxwell had
conference deadlines and PhD interviews. What followed was Winston Wonderland, in which
Winston completely overhauled our code for sprint 2 and mostly solo’d the competition (with
a bit of help from the team), yet still performed extremely well. We got top 4 not only in
the second sprint tournament, but also in the brand new mystery tournament in which the
maps are extremely difficult and test the robustness of your code.

https://github.com/maxwelljones14/BattleCode2023/commit/7536daed46184efe4008c5a83290f90bdeb964c4
https://github.com/maxwelljones14/BattleCode2023/commit/00e51a440225ef22e74f8023d586f34844417f29

4 Musketeers - Battlecode 2023 Strategy Guide

2.4.1 Balance Changes

Just like last year, the devs attempted to make major balancing changes between sprint 1
and sprint 2, but they didn’t end up changing anything. There was only one change that
required us to alter our strategy, and that was HQ damage. The devs were noticing that
literally every team was sending launchers to charge the enemy HQ and huddle around it so
that they could kill anything that spawned, so the devs made it so that anything in an HQ
action radius would take passive damage. The change? Do the exact same thing, but stop
when you’re a step away from the action radius. The strategy was exactly the same, just
with a slight tweak. We also adjusted the pathfinding a bit to avoid the HQ when possible.
There was another balance change, which was that the HQ could build multiple units on the
first round, so we could build all 8 of our first rounds units in less turns. There was a catch,
though, at least for our strategy. In order to tell a carrier whether it’s an adamantium or
mana carrier, we set a flag in the global array. Well, if we build two carriers, we can’t set
the flag in two different ways, so how do they know which is which? We ended up building
multiple launchers per round but only building one carrier per round.

2.4.2 Adding Nuance

For the most part, we’ve assumed that if you get to a sector, you can find anything in that
sector pretty easily. That assumption starts to get rocky when you consider clouds. We
added some new logic so that you start by going to the center of the sector and then explore
the four corners. To avoid using a lot of bytecode, we precompute sector centers when a
robot is initialized so that we don’t have to do any math after turn 1. Other bytecode
optimizations include hardcoding the buffer pool (i.e. rather than for i in range 0 to 64,
have 64 sequential statements).

We added some more nuance to launchers blocking the enemy base. Let’s say that the
friendly and enemy HQs are on opposite ends of the map, but away from the edge of the map
by 5 squares or so. We’d never approach the HQ from the back because there’s not much
open space there, but if we only approach it from the front, then the back is unguarded,
and the HQ can spawn enemies. We made a change so that launchers crowding an enemy
base will rotate around it, attacking any enemies they find along the way. Not only does
this better guard the base, but it creates openings in the direction we originally came from,
allowing more launchers to join our circle and creating a stronger defense. We also made it
so that they invalidate symmetry locations, allowing them to find enemy HQs faster. If we
have two HQs, then there are two possible HQ locations if the map has vertical symmetry,
two more if it has horizontal symmetry, and two more if it has rotational symmetry, give or
take. Well, if we explore the first vertical, and it’s not there, then the second vertical isn’t
either! This makes us better hunters.

Our macro got more nuanced as well. Before, we were just maintaining a constant ratio
of adamantium to mana. Now we make a more complicated calculation. We wait until we’ve
taken a first guess at where the enemy HQ is. If it’s close, then we need to build a lot of
launchers, or else we’ll die. If it’s not close, then we have time to build adamantium carriers
and build up our supply before we need to start getting mana for launchers. In this case,
we can prefer adamantium 3-1, which never happened before. In addition, we can make

https://github.com/maxwelljones14/BattleCode2023/commit/be6e64da46f39731a1e6be2e9189538c0d0bd6aa
https://github.com/maxwelljones14/BattleCode2023/commit/59a4b4b89f9fb470a6c32082d5b9bad35a175990
https://github.com/maxwelljones14/BattleCode2023/commit/959075017b104045c02120f6bbbc0b6e90454475
https://github.com/maxwelljones14/BattleCode2023/commit/33eabaf1aa75ac7b24b09028fcabae46753c6aa1
https://github.com/maxwelljones14/BattleCode2023/commit/9422e04f9ad6d74d2e8ee8b00424c31d32875b11
https://github.com/maxwelljones14/BattleCode2023/commit/570ac196ce4630eb0e3bea350a92c6bbba48b053
https://github.com/maxwelljones14/BattleCode2023/commit/a554237fe51d20cc681b3db4f4ba0b68f7e12d3d
https://github.com/maxwelljones14/BattleCode2023/commit/3b83539375b758b60322e8cf771d21a0009ee149

4 Musketeers - Battlecode 2023 Strategy Guide

decisions based on which wells we’ve seen. If we see a mana well but no adamantium well,
and it’s a small map, then the adamantium well is probably hard to get to, maybe tucked
away in a corner. In this case, we build exclusively mana carriers. If it’s a bigger map, then
there are probably still adamantium wells we can find, so we build mostly mana carriers but
still build adamantium carriers. Vice versa if we’ve only seen an adamantium well.

Figure 4: Launchers move behind the enemy base to make room in the front for more.

2.4.3 Testing Versions Efficiently

In the past, if we wanted to test two different versions of our player, we would have one of
the teammates run that version against all previous versions locally. When there are > 30
maps, this can take hours and renders that person’s computer useless due to the processing
power. Around this point, we finally got around to adapting a feature from Producing
Perfection, another finals team, who wrote a script to run players against each other using
Github Actions. After the script ran, we would get a nice match summary detailing how our
bot did against an older version we specified.

2.5 The Cheung Dynasty

Still, Winston was running our codebase, but now, he wasn’t just surviving. Mostly sin-
glehandedly (with the exception of Section 2.4.3 and some ideas of Section 2.5.5), Winston
was able do amazingly against the entire competition and maintain the top seed going into
qualifiers and finals. We lost in the winner’s bracket in qualifiers due to a map exploiting an
extremely rare bug in our code, but we won both loser bracket rounds 5-0 and moved on to
the final tournament.

https://github.com/maxwelljones14/BattleCode2023/commit/8a66137a582be0c8918afc6e5a1992d5bab92026
https://github.com/awesomelemonade/Battlecode2022/blob/master/run_matches.py
https://github.com/maxwelljones14/BattleCode2023/blob/main/matches-summary20.txt

4 Musketeers - Battlecode 2023 Strategy Guide

2.5.1 Tragedy Struck

We entered the qualifying tournament as the top seed, but unfortunately lost to the sixteenth
seed Baby Ducks in the winners side. There were two main problems that caused this
catastrophe. The first was a map with 3 HQs all bunched up in the corner. On turn 1, the
top left corner is supposed to:

1. Create launchers and carriers, and find good locations to put them on.

2. Record the locations of other friendly HQs.

As previously mentioned, we use flags to tell carriers what kind of resource they’re hunt-
ing, so we want them to be closer to our HQ than any other. On this map, however, the
combination of the adjacent HQs and the map edges around us meant there were no loca-
tions closer to the top left HQ than the other two, so that HQ cycled through every single
position trying to find a good spot, using up a lot of bytecode. As a result, it never got to
the second step and didn’t record the other two HQs. Because other friendly HQs were set
to null, any functions that use those HQs would throw null pointer exceptions, making the
top left HQ completely useless. As a result, all resources deposited into that HQ was wasted,
costing the game. After qualifiers, we made extra sure this bytecode issue wouldn’t happen
again by adding more bytecode checks. The second issue was pathfinding on a particularly
large map with lots of walls. As more bots got stuck, new bots would continually oscillate
rotation directions (refer to Section 2.1.2 for more details). Our bots got stuck in one section
more than our opponent, and we ended up wasting a bunch of resources. With this being
said, guessing rotation does way better on most maps, so it was worth the cost (especially
against enemy teams who were also increasing movement speed on most maps by guessing
better rotation directions).

Figure 5: The two maps where we failed, the one where the HQs were bunched up, and the
one where our launchers got stuck pathfinding.

2.5.2 Healing

As always, the devs introduced a new balance change after the sprint tournament. The
previous balance changed introduced the capability for owned islands to heal units, but this

https://github.com/maxwelljones14/BattleCode2023/blob/main/src/MPWorking/Headquarters.java#L644
https://github.com/maxwelljones14/BattleCode2023/blob/main/src/MPWorking/Robot.java#L134
https://github.com/maxwelljones14/BattleCode2023/blob/main/src/MPWorking/Headquarters.java#L937
https://github.com/maxwelljones14/BattleCode2023/commit/2e146ed7b59a1efd12649a1b441c411ef5fed4ea

4 Musketeers - Battlecode 2023 Strategy Guide

balance change buffed it enough to be viable. A rudimentary strategy would be to keep track
of the nearest island you own and go there if you’re low on health, but there’s a catch. Let’s
say that in a skirmish, you have four launchers, and they have two. Easy win. But if three
of your launchers have low health? Those three will go to heal and leave the fourth, who
was ready to battle, all alone. That launcher will then die and become useless even though
it was your strongest one. So, unless your health is very high, if you have friendly robots
with low health, you should go to heal, too. Stick together and come back to fight later.
But when you get to the island, where should you situate yourself? Islands take up multiple
squares, and you have to choose which one to use to heal. It seems like an irrelevant decision
but can make a huge difference if enemies come to the island. We implemented a scoring
system that rates possible locations, and you go to the spot with the best score. A spot will
get more points if it’s in a cloud (so that you are unlikely to be attacked while healing), near
other friendly launchers (so that you can work together to defend yourself if attacked), or
near you (so that you can start healing as soon as possible).

Figure 6: Launchers going to heal and then those same launchers going back into battle.

2.5.3 Elixir

Last year, the balance changes after sprint 2 completely changed the meta, with every team
having a soldier rush before the balance changes and every team having a sage spam after
the balance changes because gold was finally a worthwhile resource. This year, that didn’t
happen. After the balance changes, elixir was equally as useless. Very few teams used elixir
at all. We ended up implementing elixir capability because it was useful for a few select
kinds of maps, but we didn’t use it as part of our main strategy, nor did any other team.
In particular, we used elixir if the map is sufficiently big and it’s sufficiently late into the
game because that means that there will be a lot of units, so a destabilizer blast attack
will be very effective. We only convert mana wells because sacrificing the mana to convert
an adamantium well meant a temporary halt in launcher production, opening yourself up
to a rush. When picking which mana well to convert to elixir, we consider all of our mana
sectors and adamantium sectors and find the mana sector with the smallest total and average

https://github.com/maxwelljones14/BattleCode2023/commit/c627c328487b80970643b5ec33b2eae5b6341d56
https://github.com/maxwelljones14/BattleCode2023/commit/255a0ebeaa8673aaf9116727c1fdd421e02ae86c

4 Musketeers - Battlecode 2023 Strategy Guide

distance from adamantium sectors. This is because we need adamantium to turn it into elixir,
and if the adamantium is close by, the conversion is quick.

We also tried to add amplifiers at this point, but we couldn’t quite get them to work
well. We noticed that The Gradiloquent Grinders (another team in finals) were using
amplifiers to communicate the exact locations of enemies as opposed to just sectors in order
to facilitate blind attacks, which seemed to work quite successfully to their advantage. In the
last few hours before submitting for the final tournament, we tried mimicking this behavior,
but clouds did not seem to be prevalent enough for this to make a large difference. Moreover,
our amplifiers were too unpolished for it to be viable and we still weren’t sure exactly when
to make them. While there were some attempts to use them, no amplifier code ever beat
our code without amplifiers, so they were scrapped.

Figure 7: Destabilizers slowing down the enemy to help out our launchers and us having
control only a few turns later.

2.5.4 Final Carrier Changes

Currently, carriers get assignments, and then they gather the resource they’re assigned to.
Pretty simple. At that point, the carrier kind of lives in a bubble and doesn’t care about
what’s happening in the rest of the game. But what if it’s advantageous for our carriers
to switch which resource they’re gathering? In particular, say that there ends up being a
combat sector near our HQ. In other words, enemies are approaching us. Well then, we
need launchers - we’re under attack! So carriers currently gathering adamantium should
start gathering mana so that we can build up a stockpile and begin building reinforcements
as fast as possible. Carriers taking the state of the game into account and adapting to it is
important because it makes them part of the combat and makes us more flexible.

We also made carriers lattice around the well, meaning that they stay 2 units apart from
each other. If they all clump together around it, then not only is it difficult for new carriers
to find space, but it’s difficult for launchers to make it through if they need to go through
the well to get to their destination. Launchers lattice at heal locations for the same reason.
Finally, we made carriers “box out” enemy carriers when going to mana wells. In many
games, both teams’ carriers were vying for the same mana well, so if you can prevent enemy

https://github.com/maxwelljones14/BattleCode2023/commit/db0eafedabc562b178dd6d7da8538ce017ae4708
https://github.com/maxwelljones14/BattleCode2023/commit/03f31c82d0228d8deeb12a2d94fb0c6890424ec6
https://github.com/maxwelljones14/BattleCode2023/commit/704092321645c0ab410485e96792a2ec49a681a9

4 Musketeers - Battlecode 2023 Strategy Guide

carriers from using these wells by not letting them get close enough, this can crush their
economy.

Figure 8: Carriers lattice around a well diagonally so that units can move in the squares
adjacent to them and, blue carriers box out a red enemy carrier.

2.5.5 Final Launcher Changes

We’ve been taking advantage of symmetry with respect to enemy HQs so we know where to
hunt. But...the whole map is symmetrical! If we see mana wells or adamantium wells by our
HQ, we have a pretty good idea of where some other ones are on the map. There are two
advantages to going towards these. First, it’s more mana options for our carriers. Second,
if we send launchers towards these locations, then the enemy can’t get any mana, and they
won’t be able to build launchers. This will weaken their defense. Now, we’re focused not
only on making ourselves stronger, but also making our opponent weaker.

Figure 9: Launchers guarding enemy wells.

Throughout the tournament, launcher attacking micro has never been our bots’ strong
suit (unlike previous years). One of the main differences with this year’s micro is that the
vision radius and attacking radius of troops are almost identical. It is even possible to not
see an enemy on one turn and then be in attacking range on the next turn. For the majority
of the tournament, if we didn’t see any enemies, we would just do normal activity - even
if we had just left the vicinity of an enemy! The key scenario to handle was what to do if
we had just seen an enemy but no longer see enemies. Our first attempt was to just wait

https://github.com/maxwelljones14/BattleCode2023/commit/9310876806d4b71758b6d6cfcdfd0e448c0d2c65
https://github.com/BSreenivas0713/Battlecode2022/
https://github.com/maxwelljones14/BattleCode2023/commit/6c2a081c403058f8fe1d1561702f002b5935a8b9

4 Musketeers - Battlecode 2023 Strategy Guide

for some fixed amount of turns, but this didn’t end up working super well. Instead, what
worked is trying to go directly outside1 of the vision radius of the closest enemy troop. As a
result, enemies would be forced to come into your vision radius to move forward, giving us a
slight advantage. We also added another slight optimization: if we see an enemy and deem
it worthy to move forward to attack this enemy, we now may see some enemy that is better
to attack, so we should switch our enemy target after moving.

3 Final Thoughts

This is our third strategy guide. In our first, we had a section giving advice to new players.
In our second, we had insights into how we approached the game as a returning team rather
than a new one. Now, with this as our last year eligible for Battlecode, we thought we’d
dedicate a section to reflecting on the activity as a whole.

3.1 This Year’s Game

This game repeated a lot of the drawbacks from last year, with fixed unit costs leading
to very similar strategies and a useless, difficult to obtain resource that very few teams
used. Although the new communication restrictions were annoying at times, they actually
were pretty interesting and forced us to come up with creative methods. The addition of
amplifiers and the fact that you can spend resources to make communication easier was a
nice touch. A big improvement from last year, though, was that whereas 2022’s anomalies
were completely ignorable, you could not get through 2023 without coding for currents and
clouds. They were 100% part of the game and needed to be part of your strategy. We like
it when all the mechanics are relevant. The downside of that, though, is that some maps
became very frustrating. Maps where it’s easy to get stuck behind walls or be unable to
make progress because of backwards currents were not very enjoyable. Jail, in particular,
was a map where spawning towards the wells, the strategy that literally every team used,
would result in your units being stuck in a jail. The result was that every single match went
to 2000 rounds and went to whichever team happened to stockpile resources rather than
build more things. Walmart and Potions were similar in that regard. It was better when
there were things like rubble, which made it harder to move, but not impossible. There
were far too many maps where nothing happened for 2000 rounds. On the plus side, the
carriers were very well-designed robots. The fact that their speed changed based on their
cargo and their capability to use their cargo to attack was very fun. Launchers were simple
but effective as well.

3.2 David’s Reflection

One thing I like about Battlecode is the teamwork. Battlecode has so many different com-
ponents to it, and different components speak to different people. As a majority-systems
programmer, I love building infrastructure. When our state stack was getting too large our

1There’s actually a bug here. Bonus points if you can find it! Fixing it actually made our bot worse, and
it was too late in the tournament to see why exactly. So we left the bug in.

https://github.com/maxwelljones14/BattleCode2023/commit/80bb7e56619155c0af229b25662927123b47919c
https://github.com/maxwelljones14/BattleCode2023/commit/88055caf1debda911cd3746eab83fd4a1f8756b8
https://battlecode.org/assets/files/postmortem-2021-musketeers.pdf
https://battlecode.org/assets/files/postmortem-2022-5-musketeers.pdf

4 Musketeers - Battlecode 2023 Strategy Guide

first year, I figured out how to refactor our code into a system where you toggle the state at
the beginning of each turn based on the current information, and we still use that feature
now. Last year, using failure handling concepts from distributed, I spent days building the
capabilities for our HQs to share resources and pass tokens around so that we could still man-
age everything effectively if one of our HQs died. This year, using concepts from databases,
I created a system where we could manage sector information given the new communication
restrictions. But that’s only one part of Battlecode. Maxwell spent a lot of time watching
matches and analyzing the strategies of other teams, and that kind of stuff just didn’t click
for me like it did for him. I see Battlecode matches like a beginner sees a chess match; it’s
just a bunch of pieces moving around. Winston had in-depth language knowledge and was
able to create these custom data structures that would use minimal bytecode or create a
navigation library using all these different pathfinding algorithms, all of which I had very
little knowledge about. Everyone played their part at some time or another and utilized
their different strengths.

I think the Battlecode codebase is very nice. It’s a relatively simple class inheritance and
coding style that intuitive for advanced programmers and beginners alike. It’s a great way
to make programming more fun. I think the games are rather complicated, though. There
are more rules than your average board game, and they keep changing every week. There’s a
general lack of balance, leading to most teams converging towards the same strategy. Perhaps
it would be better if there were levels, maybe a very simple game for beginners, a moderately
complex game for most people, and then an extremely complex game only for teams who
want a ridiculous challenge. I also don’t love the odd desire for ridiculously difficult maps.
Watching matches go to a 2000 round tiebreaker because neither team could get past all
the walls is not fun. I prefer to watch teams at their best. Although I wish Battlecode was
earlier and didn’t coincide with the spring semester (though I understand that’s necessary
for MIT students taking it as a class), I really like the pace with a tournament every week.
It rewards hard work and persistence. Overall I had a blast, and it was a great activity to
practice my programming skills on and have fun competing in.

3.3 Maxwell’s Reflection

I agree with David about basically everything, so I’ll keep my section shorter. First off, if
you want to get involved in Battlecode, you should go for it! Working on a bot with friends
is super fun and rewarding, regardless of how many strategies you can add. If you want to
try and improve as much as possible, reading post mortems like these is definitely the right
way to go. There are lots of good ideas in them, and they usually link to people’s GitHub
code, which can be super helpful (as you can see, a lot of our code this year was copied or
heavily inspired by others lol).

Overall, my favorite parts of working on the player was watching games and finding
optimizations that could be made. Lots of times, the bot doesn’t do exactly what you want
it to do and you only find these things out by watching a 500 round game and finding a
bad movement decision between rounds 134 and 135. I had a lot of fun with Battlecode,
from finding areas of improvement as mentioned above, to celebrating victories with my
teammates, to going to MIT and meeting all the other amazing competitors. I’m grateful
that I was able to participate in this competition, and hope the competition can continue to

4 Musketeers - Battlecode 2023 Strategy Guide

bring joy to it for years to come.

3.4 Winston’s Reflection

Darn, David and Maxwell sure did say everything. I’ll keep this short and sweet too I guess.
Battlecode is absolutely my favorite way to start the new year. I found out about it in

high school but was too scared to pick it up alone. I had read postmortem after postmortem,
everything from the fabled regex pathfinding to Cory Li’s bytecode hacking, and all I could
think was, “Wow...” To anybody reading this who might have the same feeling, all I have
to say is: Do. It. You will not regret it. If you can find a few friends to do it with you,
then all the better. Battlecode really does have a place for everyone: for the newbie who
is just learning how to code; for the ambitious competitor trying to sneak their way in;
and for the veteran team who is trying to bring it all home in their last year. Battlecode
poses fascinating challenges and fosters a community that cares deeply about the game and
everyone involved, and that’s what I love most about it.

3.5 Bharath’s Reflection

My teammates above really covered all the bases. After 3 years of doing Battlecode, it’s
been a great story to tell all of my friends. A month-long hackathon? I guess that’s the best
way to describe it. It’s super fun, and the vibe of working with your teammates towards
a deadline is 100% worth it. Match analysis, seeing changes come to life, watching the
hundreds of pink lines on screen to analyze our team’s path finding, and coming up with
new ideas is thrilling. It is hard to implement new ideas, because there’s so much trial and
error, but it’s all worth it in the end. As this is our last Battlecode, peace out from Bharath
and the 4 Musketeers.

http://realgl.blogspot.com/2013/08/battlecode.html
https://web.archive.org/web/20210912163846/https://cory.li/bytecode-hacking/

	Introduction
	Battlecode Introduction
	Team Introduction
	Game Overview

	Strategy Development
	Coordination
	The Sector System
	Movement

	Communication
	The Database
	Reporting

	The Opening Act
	Early Strategies
	Micro (Unit Management)
	Macro (Resource Management)

	Winston Wonderland
	Balance Changes
	Adding Nuance
	Testing Versions Efficiently

	The Cheung Dynasty
	Tragedy Struck
	Healing
	Elixir
	Final Carrier Changes
	Final Launcher Changes

	Final Thoughts
	This Year's Game
	David's Reflection
	Maxwell's Reflection
	Winston's Reflection
	Bharath's Reflection

