
Battlecode 2023 Postmortem
Don’t @ Me

George Zhang
Henry Liao
Parum Misri

Ray Guo

Table of Contents

1) Introduction
1.1) About Us

2) Game Overview
2.1) About Battlecode
2.2) Perspective on BC 2023 - Tempest

3) Development Timeline
3.1) Sprint 1
3.2) Sprint 2
3.3) US Qualifiers
3.4) Finals

4) In-Depth on Strategy
4.1) Robot Control Flow
4.2) Robot Micro
4.3) Managing Economy
4.4) Pathfinding
4.5) Communications
4.6) Bytecode Hacking
4.7) Version Control

5) Final Thoughts
5.1) Areas for Improvement
5.2) Advice for New Teams
5.2) Acknowledgements
5.3) Funny Memes



1) Introduction

1.1) About Us
We are a team of four second-year college students, with Ray, George, and Parum from the University
of Washington - Seattle, and Henry from Georgia Tech. George and Henry participated in BC 2022 -
Mutation while BC 2023 - Tempest is Ray and Parum’s first time doing Battlecode.

Because of how much we enjoyed Battlecode as a team, we hope to make this postmortem as much a
celebration of the competition as it is a strategy report. We hope you enjoy it!

BC2023 Github Repo for don’t @ me

2) Game Overview

2.1) About Battlecode
Battlecode is the longest standing annual AI programming competition hosted by the Massachusetts
Institute of Technology (MIT). This AI competition, which changes its main theme every year,
generally lasts around 1 month and is fought between teams composed of up to four people. During the
competition period, teams can freely submit their own bot to the Battlecode website. From here, one
team’s bot will duke it out against another team’s bot on a virtual battlefield built by Teh Devs in a ELO
rating system. There are four main competitions during the season, with Sprint 1 hosted during the first
week, Sprint 2 hosted during the second week, Qualifying tournaments hosted during the third week,
and the final tournament hosted the final week. All tournaments are held online, with the exception
being the final tournament, where the top 12 US teams and the top 4 International teams are flown out
to the MIT in Boston to compete for over $20,000 worth of prizes.

2.2) Perspective on BC 2023 - Tempest

Battlecode 2023 is based upon a team controlling a faction of robots to capture as many “sky islands” as
they possibly can. The map is based upon a 2-D grid, with the size ranging from 20 x 20 to 60 x 60.

https://www.youtube.com/watch?v=X5d00wtBX3k&t=7984s
https://www.youtube.com/watch?v=X5d00wtBX3k&t=7984s
https://youtu.be/kYRoeRXVEQU
https://github.com/georgezhang02/battlecode23/tree/master/src/FB_VS


Some form of symmetry is guaranteed on the map. On the map, there are certain tiles that are unique
and represent a hazard, a resource, or a boost.  Robots are produced with resources collected from wells,
as well as anchors which can be used to capture sky islands.

Robots:
HQ. Headquarters are immovable and indestructible bastions that house resources, spawn
robots, and create anchors. They are also able to write into the comms array (see 4.5)
Communications), and can also generate small amounts of resources every turn. Carriers are
able to deposit resources into the HQ. HQs can also utilize the most bytecode of any unit type,
which means the vast majority of comms interfacing takes place here. We cycled through
several strategies involving HQ defense, such as having launchers regroup at HQ when enemy
units are sighted, but ultimately we realized that falling back to defend HQs wasted far too
much time, and rarely if ever gave us a competitive advantage. We eventually streamlined our
philosophy to be simply this: the HQ exists to receive resources, produce robots, and share
information.

Carriers. Carriers harvest Ad and Mn from wells and drop it off at HQs, can throw the contents
of their inventory to deal damage, and can carry anchors to capture islands. There are two main
questions we faced in our implementation of the carriers: whether we should spawn them
before launchers, and what resource type to go for first. The first question was mostly resolved
after the sprint 1 updates which allowed HQs to spawn units much faster. The second was
resolved when we devised a well-assigning system that guaranteed a balanced resource
harvesting split, allowing us to properly grow our economy in the early game. As for the
carriers’ ability to throw the contents of their inventory to deal damage, we decided that if a
carrier was damaged, they would immediately throw the contents of their inventory at their
attackers and run away, as they would otherwise usually just die and lose their resources.
Finally, regarding anchoring islands, in the first couple weeks it didn’t have much impact, but
as the competition progressed and updates made it more viable, we discovered that it was
extraordinarily useful for establishing communications, healing units, and generally winning
the game. Carriers have proven themselves to be an indispensable part of any strategy since day
1, but innovation and iteration have helped us make the most of their diverse skillset.

Launchers. Launchers are Mn units and represent the basic attacking units of the game. They
are able to deal damage to an enemy robot within its action radius, even if the enemy robot is
obscured. When devising our strategy for utilizing launchers, we focused on three key features -
their micromovements, their pathfinding, and their grouping. Kiting, where a launcher steps
away from the target after firing a shot to avoid taking damage, was an essential part of our
combat strategy, allowing us to win otherwise unfavorable matchups. Pathfinding and grouping
went hand in hand - the launchers needed to efficiently find their way to their destination, and
were most effective when working together as a group. We were able to create “squadrons” of
launchers, where small groups would traverse the map together and attack targets together.
Improving the cohesion and maneuvering of the launchers proved to be an extremely important
part of the game, and mastering these aspects most likely meant mastering Battlecode as a
whole. We found that launcher rushing, where we sent a large amount of launchers early in the



game to attack the enemy HQ, was a highly effective strategy, often deciding the fate of the
game in less than 200 rounds.

Signal Amplifiers. Signal Amplifiers are Mn and Ad units that allow for robots within its vision
range to write to the comms array. We believe that they should be produced in moderation, as
too many signal amplifiers means alot of overlapping in signal, but to little signal amplifiers
one may find a lack of coordination within the team. Amplifiers’ main use was for exploration
and mapping out points of interest, as they are the only unit (aside from HQs, which cannot
move) that can both read from and write to comms at any point. By gathering more points of
information and building a more complete picture of the map, in combination with verifying
symmetries, amplifiers allow us to predict things like the location of enemy HQs and resource
wells. Due to the intense limitations on available information in the game of battlecode, the
freedom of communication provided by amplifiers can be remarkably powerful.

Temporal Destablizers. Destabilizers are Ex units and represent late game attacking units. For
their attack, they are able to select a tile within its action radius to attack. This attack slows
enemy bot action and movement cooldowns for a large, circular area for 5 turns and deals
damage to all enemy robots caught within the attack. Elixir was far too slow to successfully
utilize in the rush-heavy metagame, so we ended up not ever using destabilizers. However,
there are some theoretical use cases in which it could be strategically advantageous to have a
destabilizer. Launchers are most effective when grouped up, so the area-of-effect damage
provided by destabilizers would ostensibly be a powerful counter to the dominant force in the
metagame. Carriers are also almost always grouped around wells, so a single well-aimed
destabilizer could swiftly cause significant disruption to the opposing player’s economy.

Temporal Boosters. Boosters are Ex units and represent late game support units. For their
action, they are able to boost robots within their action radius, reducing the movement and
action cooldown for nearby robots. This boost can stack up to three times. Much like
destabilizers, thanks to the unusability of Elixir, we never ended up implementing and using
boosters. However, there are still some interesting use cases that we considered. Using boosters
in combination with carriers could significantly increase the economic output of a single well.
Including a booster in a launcher squadron could increase the effectiveness of their micro,
allowing them to both shoot faster and kite more quickly.

Anchors:
Standard Anchor. Costing an equal amount of Ad and Mn, a single anchor canbe carried by a
carrier. An anchor can be used to capture a neutral sky island. Once used, a standard anchor
allows for a certain amount of healing to allied robots. We always knew that since islands were
a major part of the game that the standard anchors would be critically important to winning the
game.

Accelerating Anchor. Costing a large amount of Ex, accelerating anchors share the same traits
with standard anchors except they have higher HP and any island captured by an accelerating
anchor heals allied robots for more HP, as well as decreasing their cooldowns. Much like



destabilizers and boosters, we did not use this anchor due to the unavailability of Elixir. While
in theory they are useful for holding down islands, when an enemy snowballs over an island it’s
very difficult to play to retake it, regardless of the health of the anchor on the island. Even if
you did have elixir, you would be better off with the offensive power of a Destabilizer.

Map Tiles:
Standard Map Tile. Usually covering most of the map, these are tiles that have no special trait
attached to them and are standard passable tiles.

Walls. These tiles are impassable and cannot be removed. Unlike previous years, there were
tiles that could not be passed, which made BugNav a reliable pathing strategy.

Clouds. These tiles obscure vision. For every robot that enters a cloud, their vision is decreased,
but they are also obscured to others not within the cloud tile. Clouds also slow both movement
and action cooldowns for any robot on the cloud tile. Unfortunately, vision being obscured
meant that pathing and decision making would be extraordinarily limited while fighting into
clouds and while in clouds.;

Currents. These tiles boost robots in the direction the current arrow is pointing in at the end of
the robots turn. Current and cloud tiles cannot overlap. These tiles could ostensibly be used for
more efficient pathfinding, as bots could “ride” currents over longer distances more quickly
than walking there, but since so little information is initially available about what direction the
currents flow and which way they lead, the only optimization we made for them was to treat the
currents as impassable when you were trying to move against them (or rotate around a block of
currents using bugnavs..

Sky Islands. These tiles represent an island that can be captured by any team with an anchor.
There are anywhere from 4 to 35 islands, with each island having a maximum area of 20 units.
A captured island is changed to the color of the team that captured the island and may heal
allied robots that are 4 units within an ally island’s boundary. A captured island may be
uncaptured by the opposing team. Sky islands are one of the most important map features in the
game, since maintaining control of 75% of the existing islands is an automatic win. The buffed
healing provided by anchored islands allowed for defensive play to become slightly more viable
- damaged launchers could retreat to a friendly island and heal up rather than fruitlessly push
forward and end up dying.

Wells. These tiles represent indestructible resource wells that can be used by any team. Each
well represents a single resource and contains an unlimited amount of that resource. Wells can
only be accessed by carrier robots adjacent to its location. Wells can also accept resources to
upgrade it. If a well gets its own resource pumped back into it, it becomes an upgraded well for
that resource and the draw rate is higher. If the well gets an opposite resource pumped into it, it
becomes an elixir well. Wells are considered passable terrain. Upgraded wells and elixir wells
proved to be competitively unviable due to the tremendous loss of tempo that resulted from
spending 600 of any given resource on producing more resources rather than producing more



units. Unupgraded wells, when fully utilized, provided more than enough resources to fully
occupy our carriers in the early and midgame, and by the late game a winner has almost always
been declared.

Resources:
Adamantium. Otherwise known as Ad, Ad is solely responsible for the production of more
carriers, and is a contributing resource to creating anchors and amplifiers. Ad is found in Ad
wells, and is also passively produced by each HQ. As the season progressed, we realized that
going for more Ad-heavy build orders was only useful in the meta insofar as it helped you
generate more mana and by extension more launchers.

Mana. Otherwise known as Mn, Mn is solely responsible for the production of more launchers,
and is a contributing resource to creating anchors and amplifiers. Mn is found in Mn wells, and
is also passively produced by each HQ. Due to the fast-paced, rush-heavy earlygame dictated
by Mn-based launcher skirmishes, Mn proved to be significantly more important than Ad in
early rounds, to the point where we had a ratio approaching 3 Mn carriers for every 1 Ad carrier
as we filled out our initial wells.

Elixir. Otherwise known as Ex, Ex is solely responsible for the production of accelerated
anchors, destabilizers, and boosters. Elixir is only obtainable from elixir wells. As stated
previously, the loss of tempo from attempting to create an Elixir well prevented us from
utilizing Ex in any real fashion.

Win Conditions:
The primary goal for each team is to gain control of 75% or more of the sky islands on the map. If this
occurs, the game automatically ends and the team with control of the islands wins the game. If no team
achieves this condition within 2000 rounds, tie-breakers based on anchors produced and resource count
take place. In early rounds of development, such as sprint 1, most games were settled by tie-breakers,
due both to the fact that most teams neglected to implement island capturing mechanics, and the fact
that anchoring islands was not as powerful as it would become through later patches. Once anchoring
was buffed, however, it became a dominant strategy in the metagame. Teams that didn’t properly
implement island capturing could lose a match even if they had a dominating economy and unit
advantage. Because of this, we made sure to implement mechanics for capturing islands even if we
were falling behind economically - it could help us eke out a win in otherwise hopeless scenarios.



3) Development Timeline
In this section, we give a brief overview of what occurred during our team's journey through this season
of Battlecode. We had a habit of changing our team quote daily to a line from The Art of War as a joke
to lighten the otherwise (often) stressful process of development.

3.1) Sprint 1: “There is no instance of a nation benefitting from prolonged warfare.”
● The basics. As with any competition, it always helps to start with the basics. For the first day,

our team primarily spent the day going over the spec to understand the game. At this time in
development, we had the idea that we would first start off with basic carrier resource gathering,
basic launcher micro, and basic island capturing, while following a pre-laid out robot control
system (see Robot Control Flow). Within the first 48 hours of release, our team was able to get
this version of the bot finalized and uploaded to the ladder. For this early bot, our carriers would
move in random directions until they found a well, in which they would extract the resource
from it and return back to the HQ. Our launchers would explore randomly until they saw an
enemy, in which they would attack the enemy. Our HQ would eventually produce anchors,
where a carrier would then take the anchor and move randomly until it sees an uncapped island.
Although not anything impressive, given the lack of obstacles on the few maps that the ranked
system were using, we were able to climb to a formidable amount of rating to jump start our
journey the right way.

● Rush, rush, rush. As the “getting to know the game” period for every team ended, it soon
became apparent that whichever team won the beginning launcher duel would go on to win the
whole match. This was also bolstered due to the small map sizes that the ranked matches were
held on.  Because of this, our team shifted our attention completely to launcher micro and
carrier resource gathering optimization. We abandoned the idea of capturing islands because by
the point one was able to produce the resources to build an anchor, the game was already won
or lost. However, given Henry and George’s experience with battlecode the previous season, we
knew that it wouldn’t be like this for the whole season. We made sure to generalize and make
our code modular, alongside working on island capping in case it ever became relevant ever
again. On top of all this, we implemented pathfinding that was more general and didn’t
hardcode any values for specific maps.

● Sprint 1 Tournament. Heading into the Sprint 1 tournament, we were placed 25th seed on the
ladder. Because of this placement, the team did not have high hopes during the coming Sprint 1
tournament. However, because the tournament matches are played on new maps, we soon
realized that a lot of teams had hardcoded values according to the three original game maps.
Because of this, some teams' robots did not function as intended and were subsequently upset
by other teams. Given the introduction of new maps, our more generalized code (especially in
regard to exploring map symmetries) meant that our bot could compete and even beat upper
level teams, despite our seemingly poor standing compared to them. We were able to upset the
8th seed Kryptonite in round of 32 and lost to the 9th seed noBFSplz 2-3 in round of 16.



3.2) Sprint 2: “Ponder and deliberate before you make a move.”
With our newfound motivation to improve on our bot after the results of Sprint 1, our team got right
back to work. Alongside Sprint 1, the new maps from the Sprint were added to the pool of maps. These
maps had more variance than the original three maps, allowing our bot to climb rating without any
adjustments. As Sprint 2 came along, the newbies of the team also gained a greater understanding of the
game and the code behind it, allowing for faster bot development.

With the start of Sprint 2 also came a plethora of changes. The first major change to the game was that
all robots got a durability buff, since health values were increased while damaging abilities had their
damages reduced. Alongside these changes, captured islands could now heal allied robots. Given these
updates, we made the following developments:

● Communication… Even with the durability update, it quickly became apparent that the updates
would have minimal impact on the meta. Spamming launchers the moment an HQ could build a
launcher was uncounterable. Any thought of trying to build anchors or trying to dump resources
into wells to upgrade them against a launcher rush team meant almost certain loss, even on
larger maps. Because of this growing trend, we decided that the best teams were the ones that
could maximize launcher production. We decided to dedicate most of our carriers to gather
from Mn wells while sending few carriers to gather from Ad wells in order to get more
launchers up faster than opposing teams in an attempt to out blitz them. Alongside these
changes, our team also believed that our launcher micro and carrier micro were in a good
enough state that we could start shifting our focus to setting up the comms system. With a
comms system, we enabled macro based decision making. We were able to determine which
wells carriers should go to, and where launchers should rush. Given our newly created comms
system, we also implemented amplifier code to allow for more robots to communicate with
each other.

● …and Deliberation. With the increase in communicative powers of our robots, more complex
decisions were enabled on an individual and team-wide basis. Our bots were able to determine
and communicate map symmetries, island locations, well locations, give attack commands, and
more. It allowed for carriers to be given well locations on spawn, anchoring carriers to find
islands to anchor quickly, and allowed launchers to coordinate attacks. It added a whole new
layer of gameplay - this change would be seen throughout the ranked later as well. Games were
quicker and the robots moved and coordinated in a more organized fashion. Several teams
would adapt well to the change in pace of implementing comms, while others didn’t.
Thankfully, our team would navigate well through building up and implementing the comms
system and we soon found ourselves constantly hovering the 1st and 2nd page of the
leaderboards. Our robots were now able to deliberate with each other, but our team also had to
deliberate what was important and what wasn’t. With the new island healing feature, our team
needed to decide if we were to implement the feature or not. We had tested some “fallback”
code which allowed launchers to fallback to a captured island to heal if it was low health.
However, after deliberation, we decided that the value we were getting from the island heal was
too low and we would rather have the map presence that the launcher presente, even if it was
low health. Unlucky for our launchers, but the best for the team.



● Sprint 2 Tournament. We entered the Sprint 2 tournament with a much better standing than
Sprint 1, coming in as 10th seed. We were confident in making it to the round of 16, but didn’t
expect to get much further. However, just like in Sprint 1, we pulled an upset and managed to
beat the 8th seed Bruteforcer out 3-2 in a set of very small maps to make it to the top 8, losing
to the 2nd seed Xenoblade GOTY in a 2-3 loss. Many of the maps were more advantageous to
us than the ones on the ladder due to a high density of wells, which enabled us to determine
map symmetry and assign carriers using communications efficiently.

3.3) US Qualifiers: “The greatest victory is that which requires no battle.”
From the beginning, our team always had the goal of qualifying to the final tournament. What seemed
like an impossible task to accomplish before the Sprint 1 tournament suddenly seemed realistic after our
performance in the Sprint 2 tournament. Given our string of good performances, we decided to put our
best efforts forward to our US qualifying bot.

With the conclusion of Sprint 2, the final major patch notes for the season were released. The major
changes included reduced resource costs to transform wells into upgraded/elixir wells, cheaper anchor
costs, reduced launcher damage, decreased launcher cost, reduced amplifier cost, and a big increase in
how much a captured island heals allies for.

● Optimization. Like heading into Sprint 2, we were confident about our carrier and launcher
micro. However, there was still good room for improvement. For this week, we fleshed out our
carrier micro, making sure that every carrier was doing its job as intended,and that our
launchers were engaging in the right fights. We also fixed a heap of bugs that became apparent
after thorough testing, such as issues with anchoring code, errors in the comms array, and more.
Anchor spawn rate, amp spawn rate, and how many carrier well assignments were also values
that were also subject to optimization. Upon reflection, we realized that we were likely only
able to optimize every small detail about our robot because the meta still mainly revolved
around launcher-rushing on small to medium sized maps.

● Playing the objective. In the latter days of the week leading up to the US Qualifying
Tournament, we had noticed matches where other teams would capture early islands in an
attempt to get value from island healing. This wasn’t a common trend, however, as many teams
still seemingly only produced anchors once the game was already in a winning state and just
wanted to guarantee the win. Despite this, through several rounds of testing, our team decided
that we would implement early island capturing and reimplement the launcher fallback code
that we had decided against during Sprint 2. With the updated healing values, we found that
there were very few scenarios where early anchor production would cause us to lose a match,
but found that there were several special scenarios where getting value from island healing
would enable us to win a match. On top of this, our optimized amp code allowed for frontline
launchers to get information about potential fallback islands. We also had a hunch that with the
updates, teh devs would create island heavy maps for the US Qualifiers in order to reduce
launcher rushing and promote island capping instead.



● US Qualifiers. Going into US Qualifiers, we were 8th seed. We were fairly confident that we
would qualify to the final tournament, since even if we lost the winners bracket match to
qualify, we would, in the losers bracket, eventually face the loser of the 1st seed and the 16th
seed to qualify, in essence having the easiest losers bracket matchup if no upsets were to occur..
During the actual qualifier, however, the 1st seed 4 Musketeers got upset by the 16th seed
Baby Ducks, meaning that we had to win our winners bracket matchup - otherwise we’d
eventually face the wrath of the 1st seed in the losers bracket. In our matchup against the 9th
seed John Silver to qualify, the maps were relatively large, with numerous large islands to
capture. Because of this, our early island capture and launcher fallback mechanism, alongside
comms and pathfinding were able to demonstrate their full power - even drawing remarks from
the commentators due to how apparent the strategy was. Launchers on these maps were able to
generate significant value from island healing, soaking 5-9 hits before healing back to full. We
would win 4-1, qualifying us to the final tournament!

3.4) Finals: “In the midst of chaos, there is also opportunity.”
After three weeks of grueling theory-crafting, coding, and optimizing, our team was offered the
opportunity to go through this process one last week. Unfortunately, reality hit as most of our team was
backlogged on several weeks of unfinished homework, exams, and projects, which made it difficult to
respond to changes in meta on the leaderboards. We would have loved to do a revamp of launcher micro
and carrier optimization, but unfortunately we were unable to.

For this final week of competition, no changes to the game were made.

● It’s a numbers game. Our strategy for the final competition doesn't differ any much from our
US qualifying strategy. We want to get the most value we can out of launchers, carriers, and
islands. For this, we made several value changes regarding spawn rates regarding anchors,
amplifiers, and we hope that this can help us gain a more optimal strategy compared to our
opponents during the final competition. We also fleshed out our island health system in hopes
that it can provide us with more value.

● Bug fixes. During the competition, we noticed that aspects of our pathfinding and carrier code
seemed to be unable to handle the significant amount of clouds, currents, and islands on the
new maps. After some analysis of the issue, we discovered numerous pathfinding and carrier
bugs that were subsequently fixed.

● Pre-finals. As of writing this, our team has just landed in Boston. We arrived one day early
since us West Coast kids have never visited the East Coast before. We’re equally as excited at
touring the city of Boston as we are to compete in the final competition! We’re happy to have
made it to the final competition, and we hope that we can make a good run during the
competition. We’re currently looking at going in as 8th-12th seed at the tournament.



4) In-Depth on Strategy

4.1) Robot Control Flow
Each turn, each robot will run a series of functions based off the sense-think-act paradigm from robotics
theory.

● Sense. Every turn, a robot first needs to sense its environment and changes in communications.
This includes sensing nearby enemies, allies, and map elements and storing them so that if we
wanted to iterate over them several times we would not have to re-sense anything, wasting
bytecode.

● Think. Based off of sensor data, comms, and the robot’s current control state, we would decide
the robot’s next control state. Control states included general “plans” that a robot would follow,
such as pathing to an attack command, gathering at a specific well, exploring etc. Based on the
robots’ selected control state, they would then attempt to carry out a series of actions.

● Act. In this part, robots would run algorithms to carry out the objectives of their control state,
which generally comprises of finding the best action and movement based off of algorithms.
Robots would also write information to the communications array if they could at this stage.

4.2) Robot Micro
Launchers:

● Attack priority. Every single robot can run rc.senseNearbyEnemies() to return an array of
enemy robots that are within their vision. If there is only one enemy, it makes sense to attack
the one enemy. However, if there are multiple enemies, we need to be able to effectively
determine which one wass of the “highest value target”. For this, we had a had a calculation
that determined the attack value of a certain robot: it was (Robot Type Value) + (Amount of HP
Attacked) + (Enemy Missing Health)/2 + (100 on kill). This strategy enabled us to focus more
important enemy robots, maximize the damage dealt, and focus low-health targets, especially if
they could be killed. We always prioritized robots already in action range.

● Kiting. Kiting is an important concept that is applicable to this game. The concept of kiting
revolves around attacking a target and moving away from it. This is extremely effective in
scenarios where our launcher has the first move over the opponents launchers during a round.
By using kiting, our launchers are often able to attack the opposings launcher first. Afterwards,
it can step away from that launcher, potentially even leaving its vision radius, essentially getting
a free hit. Because of this, we do it every single time movement is available. In general it also
allows for other allies to close the gap - if the lead launcher makes first contact, it can kite back
to allow other launchers around it to step in to gain space.

● Step up. If a launcher sees another ally is already in attack range of an enemy, it will allow itself
to step towards the enemy rather than kite away from it, as if the unit is not a destabilizer, it can
only hit one enemy in a given turn, meaning that you might as well move to attack.



● Falling back. A launcher's state is set to fallback if it is not in combat, if they are less than half
health, and if they have a fallback island.

● Fallback island. A fallback island is the closest captured island to the given launcher. Once an
island has been captured, information regarding the island is added to the comms array. This
means any launcher within comms range will have a fallback island - if there are multiple
captured islands, it will iterate through all of them every turn to find the closest one.

● Island healing. The moment the launcher arrives onto a captured island tile, it will stop until it
heals to full, where updateState() will reassign it to another state. It will only leave this state
before reaching full health if it sees an enemy.

● Follow first. When we first started making launchers, we were losing early 3v3 duels left and
right, with the opponents launcher seemingly attacking as if they had comms while our
launchers were getting picked off. After analysis, we soon realized this was because the higher
level team’s launchers would stick together, staying constantly adjacent and making optimal
moves to take grouped trades against isolated launchers. With this knowledge in mind, we
implemented a feature where launchers would follow the first person near them that moved.
The basis of the feature revolves around rc.senseNearbyAllies(). Each individual launcher
would use this function to sense its nearby allies for the turn. On a movement turn for the
launchers, it will iterate through the new positions of nearby allies. If a nearby ally’s location
had changed, this meant the robot must have moved, so the robot follows that one. If none of
the locations changed, this likely means that the current launcher is the “first” robot to move in
the pack. This way, for every group of launchers, launchers will follow the “first” launcher that
moves, making sure that they stick together.

● Explore on evens. Because launchers can only move once per every two turns, we decided that
launchers all only move on even turns, unless they are in combat. This helps launchers stay
together and helps launcher stay safe during exploration.

● HQ camping. Camping only occurs when the robot state is not set to Combat, Pursuing, or
Fallback,  and detects a HQ within its vision range. Camping code rarely triggers because of
how rare all of the conditions are met, but the code is best described as  “win more” code, since
by the time one can camp the HQ they have likely already won the game. Camping code simply
directs the launcher to wait outside of the HQ’s passive attack range. If an enemy is detected,
then the state is switched to combat. Once there are no more enemies in range, it simply returns
back to Camping code barring any other state update.

● Cloud attacks. If a launcher still has its attack after their move, and it will also have its attack
next move (calculated by sensing the cooldown of its current tile) and it sees a cloud, they will
randomly attack it if they can’t sense inside. There is no harm in performing this move, since
you can’t damage allied units, and there is a small chance one can get a free hit on a hidden
enemy inside the cloud.



Carriers:
● Anchoring. When a carrier returns to HQ, if it detects that an HQ is storing an anchor, it will

take that anchor. Once it takes the anchor, it will make an attempt to go to the closest neutral
island and cap it. This island is usually communicated to the carrier through the comms array.
However, if it cannot access comms, it will move to explore islands. If it detects a neutral
island, it will move towards it to cap it. Once a carrier has placed its anchor, it writes into the
comms array a new captured island. This is possible because captured islands grant nearby
allies access to the communications array. The carrier is now set back to a gathering state.

● Initial Gathering. Initially, we assigned carriers to wells by reading from communications the
location in the command slot of the HQ that spawned the carrier. The carriers would accept the
command by wiping it from the shared array, after which the HQ would write a new command
for the next carrier. This worked well enough for Sprint 1 but ran into several issues that we
looked to improve for Sprint 2. First, since carriers harvesting at a well by themselves cannot
write to comms, the HQ would have no idea when carriers are killed and therefore cannot
replenish carriers. We lost some maps during the Sprint 1 tournament because carriers chose to
gather from far away wells instead of closer ones, leading to lower resource outputs. Second,
the update that allowed HQs to spawn 5 units in one turn made our well assignment procedure
unviable, unless carriers waited near the HQ until they received their command.

● Gathering Revamped. For Sprint 2, we revamped our carrier gathering system completely. Our
key insight came when we realized that it was almost always more efficient to gather from
wells closer to HQs until they became full. We ended up removing the entire HQ assignment
system, detached well assignment decisions from the HQ, and placed it entirely onto the
carriers. The carriers would fill known wells saved in comms from closest to furthest
alternating between Mn and Ad, moving on to the next closest well if the current one is full or
has reached a set limit of carriers. If all of the wells are full, the carriers enter the exploration
state. We were also able to simplify our assignment decision process at the start of the game
after seeing the importance of Mn over Ad. Instead of creating numerous cases for whether an
Ad and/or a Mn well is within vision of the starting HQ, we decided to either assign the first
four carriers to Mn if there is a Mn well within vision range or choose to explore for Mn if no
Mn wells are in range. Because wells are saved globally and not specific to any HQs, we
gradually increase how far away carriers are allowed to be assigned to its first Mn well such
that they would only gather at a Mn well near another HQ after they had sufficient time to
explore near their own HQ. As more carriers are produced, we gradually increase the limit of
carriers on Mn and Ad wells, beginning with roughly a 3 Mn to 1 Ad ratio, as to not
overcommit to one resource type. The Mn limit in the early game is increased for smaller maps
and when the number of known Mn wells is less than the number of HQs.

● Exploring. Ad wells are guaranteed to spawn within 100 units of the HQ, but Mn wells are only
guaranteed to spawn within 100 units of the guaranteed Ad well. Since Mn wells are crucial to
earlygame strategy, we needed to devise a method that ensured we found the first Mn well as
quickly as possible. To this end, we utilized a strategy that we called “Pinwheel Rotation.” We



only utilize this strategy if we do not see a mana well upon initialization. Because if we do, we
can simply begin assigning carriers to it. HQs can spawn 4 carriers on the first turn, so we
spawn the four carriers as far away from the HQ as possible in each of the four diagonal
directions. Each of those carriers then moves 2 steps diagonally away from the HQ, up to the
edge of the HQ’s vision radius, and then turns left 90 degrees and moves 4 more steps. This
essentially makes each carrier sweep out ¼ of the area around the HQ while rotating
counterclockwise around it - named the Pinwheel Rotation because it mimics the rotation of a
pinwheel. By sweeping out a wide radius around the HQ, we greatly increase our chances of
discovering a Mn well and the guaranteed Ad well. In the event that we do not find it, we begin
randomly exploring away from the HQ. We also have our carriers randomly explore when the
well they’re assigned to is full (or artificially capped), allowing us to continue finding more
resources to exploit. Once a well not stored in comms is found, the carrier returns to the HQ in
order to write the well into the shared array.

An example of the pinwheel rotation strategy in action - there are no visible wells.

Amplifiers:
● At arm’s length. For combat, amplifiers simply just path away from the nearest enemy military

unit that is detected. This simple but powerful move allows our amps to stay alive for a long
time, since amps are able to detect threats from far away given its vision radius advantage from
attacking units.



● Military attachment. The following state is activated whenever there is no attackCommand
found and when there is a nearby military unit. The amp simply paths towards the furthest
visible allied military unit.

● Maximum coverage. With the exception of when an amp is combat, movement will be
overridden if there is another allied amp in sight. If this is the case, the amp will path away
from the detected allied amp. With this, we can get the best coverage with amps by making sure
amp radiuses don’t overlap.

Elixir Units:
● Too expensive. Elixir units didn’t see much play, and because of this, we only implemented very

basic micro for these units that never got to see the light of day. Our boosters would use the
launchers' follow first mechanism and boost on cooldown, while our destabilizers had a follow
first and a combat state similar to the launchers. However, again, because of how the game was,
we performed minimal testing on these units.

4.3) Managing Spawns
Because carriers only require Ad to build and launchers only require Mn to build, each HQ will spawn
these units whenever they can. Failure to do so will likely lead to a huge tempo disadvantage VS other
teams that spawn these units whenever they can. However, we will occasionally decide to make the HQ
turn into anchor or amp spawning mode (cannot be in both modes at the same time), meaning that they
will hold resources in order to spawn an anchor or amp. Note that because anchors and amps require
both Ad and Mn, if one Ad/Mn requirement is met plus additional excess to be able to build a
launcher/carrier while the other Ad/Mn requirement is not met, we will build the launcher/carrier for the
met requirement as to maintain tempo on the map.

Anchor Spawn Rates:
● Scale in moderation. For our anchors, we determined that the best way to spawn them was in

set intervals if certain conditions were met. Through watching matches, we found that in
general it was better to start the anchor building process for each HQ at round 250 if there were
enough robots on the field. This is because regardless of map size, if there is no evident winner
at round 250, then it means that the value from capturing an island and getting its healing is
worth it. After all, island healing is only as strong as the number of units that use the island to
heal, so capturing early islands just for no robot to use it would be a large waste of resources
and tempo in the early game. From here, we do a check on rounds 500 and 750 and build
anchors on these rounds under the same conditions to slowly gain more island control. From
round 1000 and beyond, we then will spawn anchors every 100 rounds as by round 1000, since
at this point if the game has gotten to this stage, it likely means that we have the resources and
launchers to afford mass anchor spawning.

Amp Spawn Rates:
● Command and control. For our amps, we knew that we needed to get them out early for early

game exploration and early usage for comms, but we also knew that we didn’t want to spawn
too many of them. This is because as described in 4.2) Robot Micro, amplifiers are able to get



out of harm's way relatively easily and are able to stay alive for several rounds. If we were to
spawn amplifiers at a constant rate like we did with anchors, then there would be a lot of
useless amplifiers that likely will have overlapping coverage. Because of this, amplifier
spawning for each HQ was based upon how many launchers were spawned from the HQ. Once
the threshold was reached, it would then reset the launchers spawned counter and increase the
launchers spawned requirement in order to spawn new amplifiers. By using this system for
amplifier spawn rates, we were able to spawn early amplifiers while making sure that we didn’t
spawn more amplifiers than actually needed after the early game.

4.4) Pathfinding
We implemented three different kinds of pathing, in order of greatest to lowest bytecode intensity.

● Bellman-Ford Pathing. Bellman-ford pathing is a dynamic-programming approach.
Canonically, it takes O(n^3) iterations, however through a strategy called loop unrolling, it is
much easier to save bytecode compared to a heap implementation for Dijkstra’s. This is because
each loop of Bellman-Ford is a simple cost minimization function across neighboring nodes,
making the comparison easier to write and generate. There are also certain heuristics that can be
used to optimize Bellman-Ford such that you don’t have to relax all edges N times: rather, you
can do it once or twice by simply relaxing edges in the correct order (from the center and
radially outward was our heuristic), which allows you to find paths moving away from your
current location reasonably well without taking up all your compute power.

● Greedy Pathing. While greedy pathing might just seem worse than Bellman-Ford, in practice it
often turned out to be more reliable. Some situations in which greedy pathing is arguably more
competitive is when a robot doesn’t have the bytecode to spare, or a robot is concerned with 1-2
turn optimality of movement (such as in combat), or a robots vision radius has been lowered (if
it’s in clouds). The greedy search is a very simple recursive cost minimization. On the first
recursion it would only search in the direction of the target location and its two adjacent
directions (since this guarantees that you move towards the target). Then, on subsequent
recursions, it would enable searching on directions perpendicular to the target direction as well.

● Tangent Bug. Bugnav is a well-documented pathing algorithm: it switches between two states:
pathing towards the goal in a straight line, and circumnavigating an obstacle if it can’t continue
moving in a straight line, until its distance to goal is lower than the initial blocking distance of
the obstacle. Circumnavigation of obstacles had several edge cases to consider, most of which
involved it attempting to circumnavigate around other robots. We used this algorithm whenever
other algorithms were unable to return a viable movement.



4.5) Communications
Part of our communications array is pictured below:

Our communications system is extremely modular, and is based off of four types of communications
that can be added in to it: HQ, Permanent, Command, and Report communications. Each type of
communication had its on control structure, and each time a communication was added to the array its
count was adjusted accordingly. If we wanted to wipe a set of communications from the list, we simply
reset the count of that communication to 0 (not spending the extra bytecode on cleaning out the rest of
the array).

Each index in the array was split into two 6-bit blocks and one 4-bit block for ease of storing
MapLocations.

● HQ Comms. HQ comms included all communications that HQs were responsible for setting
and maintaining the lifetime status of. That includes 4 ally HQ locations, 4 global HQ
commands, and 2 Well Construction commands.

● Permanent Comms. Permanent comms included all information that would be stored in the
communications array permanently. This was in order to have all units be able to read the
information on communications. These communications included locations of Enemy HQs,
Adamantium Wells, Mana Wells, and symmetry bits.

● Command Comms. Command comms were temporary commands that were split into even
rounds and odd rounds. On even rounds, robots would read from the odd section of the array
allocation and write into the even section of the array, and the opposite was true on odd rounds.
This was because if a robot published a command and it was just wiped out of the array at the
beginning of the next round by HQs, then there was a chance that half of the robots might not
see it (e.g. if you were the last in terms of turn order and published a command, then it was
wiped, nobody else would have the chance to see your comms). Thus, by writing to the evens
part of the array on an even round, you could read all commands from the last round (the odd



section of the array) without having to be afraid of overwriting  a command that somebody
hadn’t seen yet. The communications that we used this control strategy for included Attack
Commands (where launchers within radius (mapdiagonal)/4 could respond to it, and would path
towards the highest priority Attack Command near them) and Anchor Commands (which would
be sent to direct carriers with anchors towards uncontested islands so that we could capture
them.

● Report Comms. These communications were used where a robot would report a map location
and the state of that map location, and the HQ at the beginning of the next round would read the
report and then modify a permanent set of information based off of it. We mostly used this for
carriers and launchers reporting that an island had been captured or lost.

Local database. Another implementation detail that is worth mentioning is an interface that we made
for robots to store information locally. Since communication was not global this year, robots had to be
able to store information and report them when they had a chance. In order to do this, we had robots
store a list of wells and enemy HQs in local arrays, then “upload” to the global array when they were in
range of HQ or amplifier communications. They would also “download” any new permanent
information when they saw the global array had been updated (by checking the communication counts).
This made for a system that enabled us to do basic symmetry checking of the map (for if it was
rotational, vertical, or horizontal) and well assignments.

Reflection and rotation. Symmetry checking especially made significant use of this global/local
information storage strategy since by using the rotationally, vertically, and horizontally reflected map
locations of wells and HQs, you could rule out certain symmetries. Once symmetry was known, you
could reflect known well locations and ally HQ locations to find the HQs and wells on your opponents’
side of the map, and set those as priority exploration locations for your launchers.

4.6) Bytecode Hacking
Battlecode robots are constrained by the amount of compiled code that they can run, represented by
lines of bytecode. For those unfamiliar with bytecode, Java bytecode’s relationship to Java is as
Assembly is to C. Due to the nature of this constraint some actions are especially punishing: long loops
(due to increments and conditional checking), Java STL usage, and deep recursive functions.

However, due to how useful some of these features are, the Battlecode community has come up with
some ingenious strategies to resolve these issues.

Last year, we focused a lot on bytecode hacking, but this year we found that focusing on basic strategy
helped us more. However, there were a few areas that we felt were used so often in our code that they
deserved to be optimized:

● Bellman-Ford search of tiles within vision. The loop-unrolling strategy writes out every
minimization step in the series of loops, enabling us to skip the iteration steps of initializing,
conditional checking, and increments, which chew through bytecode in cases such as long loops
or recursion.



● Custom Hashset. Since HashSets were useful for determining whether an ID or MapLocation
had been seen/processed before, we definitely found the need for a HashSet that didn’t chew
through as much bytecode as the one in Java.util (which has a lot of unnecessary stuff like
exception checks and binary trees for managing collisions). Instead, we implemented our own
linear-probing hashset without any extraneous parts, significantly decreasing the costs of the
add() and contains() functions.

4.7) Version Control
We went through a 5 archetypal bots throughout the season, each with a set of 6-10 packages slowly
developing new features until we thought we had finished the objectives that we wanted to for that bot.

bot.
● DB (Dumb Bot). This simple archetype was completed within the first 2-3 days of the

tournament releasing. It consisted of exploration every turn in random directions, running at the
nearest interesting thing in vision range, and acting on cooldown.

● BB (Better Bot). This was the natural continuation of development, where we implemented
random targeted exploration rather than random movement,  more optimal micro, better
pathing, and carrier assignment to wells. This is the archetype we submitted for the Sprint 1
Tournament.

● CB (Comms Bot). Here is when our comms system came into full effect, with us maxing out our
Communications capacity such that we could determine map symmetry, report well locations
back to HQs, and send commands through the array. This is the archetype we submitted for the
Sprint 2 Tournament.

● EB (Elixir Bot). This archetype, ironically, did not end up using any elixir. We tested converting
wells, but found that without the Adamantium upgrade exploit that we were losing too many
maps  due to losing map pressure when farming elixir since the units built using it were too
expensive for most of the game. Instead, this archetype implemented better island reporting and
launchers falling back to islands, which enabled us to leverage the active use of island healing
to our advantage.

● FB (Final Bot). At this point, most of our strategies were pretty set in stone, so we decided to
just do extensive spawn ratio tuning and bugfixes. This archetype was the bot that we submitted
to both the Qualifying and Final tournament.



5) Final Thoughts

5.1) Areas for Improvement
● Bytecode Hacking. In early season, bytecode wasn’t much of an issue since most of our

strategies were simple, or complicated implementations were usually the only
bytecode-intensive part for their specific bot. However, as our bot behavior became more
complex over time, our lack of bytecode optimization started to hurt us more and more as our
bots started to run out of compute power later on into the season. Some of the higher-level
strategies we conceptualized but never implemented would definitely have required a
significant degree of bytecode hacking (e.g. parallelizing through integer operations, using
more bitshifts, code generation for loop unrolling, using 1-cost stringbuffer ops to store and
modify info), so if we start looking into advanced strategies earlier in future competitions it will
be important to optimize bytecode usage to a higher degree than we already have.

● Advanced Communications. Right now, our communications system is well-implemented, but it
lacks an order of power that can be gained from changing the type of information that is
reported every turn. This problem is twofold: first, the way the current communications system
is designed, there is empty space in the array almost every turn that could likely be used to
communicate something more important going on on the map at a given moment. Second, some
information can be broadcast on even turns, or odd turns, or every four turns, such that bots can
gain a slower, but more in-depth understanding about the state of the map.

● Be more adventurous. Last year, our team suffered from conceptualizing difficult strategies
early on without actively figuring out implementation details, leading to us having some
well-thought-out strategies but with glaring weaknesses that were exposed during competitions.
This year, in order to qualify, we focused almost entirely on generality and robustness, which
got us towards the finals. However, against the top teams, what we’ve realized that at the
highest elo, generality and robustness starts to take a back seat to legitimate higher-level
strategy. We didn’t have enough time to pivot our designs out towards having more specific
strategies for specific map states. In the future, with our increased experience of competing
against better teams, we hope to develop into these more specific strategies earlier on into the
season.

5.2) Advice for New Teams
● Be prepared. Read the specs and previous years’ postmortems: you never know what might be

changing from last year, so it’s useful to amass all the knowledge that you can. Study strategies
that remain relevant throughout the years: previous pathing, communications, and development
processes are especially important. If you are extremely unfamiliar with robotics theory, bit
manipulation, or search algorithms, pick up some material on those as well . If you have new
members, make sure to spend the time to give them a thorough onboarding, and make sure they
understand the huge time commitment that Battlecode is.



● You may have lost the battle, but you have not lost the war. It’s a long season which means that
mistakes early won’t amount to anything large. Being consistent in the work that you put in is
more important.

● Make it work, make it right, make it fast. While this mantra is often an overused cliché in
software development, it holds significant merit in a high-pressure, low-resource environment
like Battlecode. More often than not, it is important to get the fundamentals of your core
strategies down first. Don’t try to invent Battlecode Stockfish without having the basic dumb
“run straight at the nearest thing” bot done. This isn’t to say that grand ideas and designs aren’t
possible: rather that having something working first is more important. Due to the distributed,
high-dimensional, bytecode-intensive nature of battlecode, optimality is often not so important
as robustness, at least when you’re just getting started.

● Push every advantage. This might seem contrary to the above, it doesn’t have to be. While
you’re getting something simple working, it’s a good idea to plan ahead for ideas that you’d
like to try out, and list them in terms of priority. If you’re not sure about a strategy, there’s no
harm in just trying to implement it in a copy of your current best bot and testing if it makes the
bot better. Create a copious number of new packages and new versions, each implementing or
testing a new feature that you think will help you win. You’ll need every edge to win come the
tournament.

● Modular code. This is more for teams of more than two members, where not everybody
understands all the code in the project. Making the code readable and also flexible greatly
improves the efficiency of how fast a team is able to adapt to changes. By splitting an overall
strategy up into multiple parts (such as communications, pathing algos, bot-specific micro, and
interfaces between each of these) it becomes much easier to swap out easier-to-implement
strategies written earlier with advanced strategies developed later in a cycle of iterative
development. It also helps in others’ understanding of and ability to modify code that you have
written. You don’t want to be heading into week 3 with a mountain of technical debt due to an
unparseable codebase.

● Copying strategies. Understanding another top team's strategy and applying it yourself is never
a bad idea in Battlecode. Some of these competitors have been doing Battlecode for 5-6 years,
so you’ll have to spend time just to catch up, then more to imitate, implement, and understand
some of their strategies. But remember: you have to actively attempt to improve upon the
“inspired” algorithm, or else it’ll never be as good or better than the team that you took it from.

● Full-set scrimmaging. Make sure to get a comprehensive overview of how well you’re doing
against other teams, and use the ladder to examine their strategies. Just three matches might not
be enough to highlight the strength and expose the weaknesses of one's robot. Luckily, this
season teh devs decided to enable 10-match scrimmages online, which greatly helped in this
regard. We paired online full-set scrimmages against other teams on the ladder  with all-map
scrimmages against old versions of our bots on our local clients to ensure that we were making
progress consistently throughout the season and to track the state of the meta.



● Code > Elo. Especially during early season, we found that by focusing on the quality,
modularity, and adaptability of our code rather than on how to win matches on the existing
maps brought us greater success during tournaments. Generalizing solutions in your code rather
than coding for specific cases that appear on the ladder often helped us find wins in
tournaments where opponents might have hard-coded heuristics that beat us on the ladder.
Focus on making the bot better, and the elo rise will come naturally.

● Find the fun. It’s way easier to focus on the competition if you can find the enjoyment in it,
whether that’s climbing elo, developing a specific part of the bot that you’re responsible for,
interacting with the community, or the competitive atmosphere of the tournaments.

● Strong mental. Finally, we’d like to offer a few words of encouragement. Battlecode wasn’t
always a good time. Sometimes we despaired as our bot started losing to an older version across
a set of 30 maps. Sometimes we went close to 0-12 in ranked scrimmaging. But being willing to
go through lost game after lost game, examining your bot’s weaknesses so that you might
improve them, is par for the course in this competition. With everybody on our team at less than
2 years of experience, at times it was difficult to see the point in continuing to compete against
all the absurdly good teams that participate in Battlecode annually, but it’s important to
remember that even the best teams weren’t always ranked highly. If you truly believe in your
team’s ability to pull out the win, and can break down your problems into manageable
objectives, then odds that at first glance seem insurmountable can eventually become just
another hurdle to crossed.

5.2) Acknowledgements
Again, thanks so much to teh devs for all the work they put into organizing the game, ladder, and
tournaments, and especially serenali for helping us with the trip. We know how much time in advance
preparation begins for Battlecode and greatly appreciate them for spending their time to give us such a
wonderful opportunity. Also huge shout out to the teams Super Cow Powers and XSquare for actively
exploring well beyond the meta throughout the season and often openly sharing strategies generated
from their wealth of experience. They greatly helped us and other competitors improve our bots, and
continue to contribute to the Battlecode community even as grad students.



5.3) Funny Memes
We wanted to spotlight some exceptional memes made by the Battlecode community that we think
exemplified the spirit of the competition this year.

Credit: A214 Credit: Your Anchor is On Another Island

"Never Gonna Give You Up" by Rick Astley, but it's in BattleCode
Credit: odo

Credit : Pudding1015 Credit: 4 Musketeers

https://www.youtube.com/watch?v=SEvLVYE_iT8

