
The Kragle - Battlecode 25 Postmortem

Justin Ottesen, Andrew Bank, Matt Voynovich

Last Updated: February 5, 2025

Contents

1 Introduction 2
1.1 Our Team - The Kragle . 2
1.2 Past Performance . 3
1.3 Game Overview . 3

2 Strategy & Implementation 4
2.1 Sprint 1 . 4

2.1.1 Setup . 4
2.1.2 Resources & Towers . 4
2.1.3 Special Resource Patterns . 6
2.1.4 Pathfinding & Map Representation . 6
2.1.5 Sprint 1 Performance . 6

2.2 Sprint 2 . 8
2.2.1 Rewrite . 8
2.2.2 MapData . 8
2.2.3 Painter . 8
2.2.4 Communication . 9
2.2.5 Pathfinding . 9
2.2.6 Opening Theory . 9
2.2.7 GoalManager . 11
2.2.8 Paint Towers? . 11
2.2.9 Sprint 2 Performance . 11

2.3 US Qualifiers . 12
2.3.1 Floating Resources . 12
2.3.2 Reducing Idle-Time . 12
2.3.3 Qualifiers Performance . 14
2.3.4 Tournament Structure Suggestions (and Complaints) 14

3 Conclusion 15
3.1 Reflection of our process . 15
3.2 Reflection on the game . 15
3.3 Advice . 16
3.4 Until Next Year. 20

1

1 Introduction

We believe our postmortem will be of unique help to future Battlecode participants. Often, teams who
make postmortems are those who have consistently placed highly from the start. We have the perspective
of a team that spent years with no consideration of qualifiers, who this year became one of the higher level
contenders, going toe-to-toe with the 2 seed in the US qualifiers.

Hopefully you find this useful!

1.1 Our Team - The Kragle

We are a team of three computer science students at Rensselaer Polytechnic Institute (RPI). In this year’s
competition, we made “the leap” from being a team that couldn’t submit a final bot to being a contender
for the final tournament. We’ll outline some tips and tricks for other aspiring teams to make ‘the leap’
themselves. We are historically terrible at coming up with team names, and ended up choosing The Kragle
after Justin had a burst of inspiration working on a MicroManager class shortly after re-watching The Lego
Movie1. Just you wait for what we cook up next year. Some more information about us is below:

Andrew Bank has competed in Battlecode since 2021. He is a Computer Science and Computer Systems
Engineer at RPI and will graduate in this spring 2025. Andrew has interned at Johns Hopkins Applied
Physics Lab, he has created the Circuit Randomizer for Personalized Learning as an undergraduate research
project under Professor Shayla Sawyer, and is currently working on another undergraduate research project:
the MusicX project for Professor Sawyer’s Mercer Xlab. In his free time, Andrew enjoys having more
Strava followers than Instagram followers, and he enjoys treating Stardew Valley like an operating systems
optimization problem while playing with his siblings.

Justin Ottesen has competed in Battlecode since 2022. He began his undergraduate degree in Computer
Science in Fall 2021, and graduated a year early in Spring 2024. He stayed at RPI for his Master’s, where he
does research with the BRAINS Lab under Oshani Seneviratne with a focus on incentive design for smart
contract protocols, and is on track to graduate in Fall 2025. Outside of classwork, he has worked as an intern
at Nasuni since Summer 2023, and is on the D3 NCAA Cross Country and Track teams at RPI. In his free
time, he enjoys hiking, running, programming, and playing Mario Kart Wii.

Matthew Voynovich started competing in Battlecode this year. He began his undergraduate degree
majoring in both Computer Science and Information Technology and Web Science at RPI in Fall of 2023.
He is scheduled to graduate in Spring 2026 and plans to pursue a masters under the Co-Terminal program at
RPI. Currently, Matthew works as an undergrad researcher under Thomas Morgan studying quantum phase
investigations, and in his free time enjoys long distance running with his friends in the Rensselaer Running
Club.

1One of the greatest movies of all time

2

1.2 Past Performance

Andrew was the only member to compete in 2021. In 2022, Justin joined Andrew, working together again in
2023 and 2024 along with some other teammates. We did not perform particularly well in any of these years,
typically holding a 1200-1500 rating, with no notable performances in any of the tournaments. Unfortunately,
the RPI Spring semester always starts very early, so we were always balancing classwork along with the
competition. This year we went all in, and entered the US qualifier tournament with the 10 seed, rated at
1730. I guess you’ll have read this to see how we did...

Although we aren’t sure our code will be useful to anyone else, our GitHub repositories can be found below:

2021 Fire Nation - Lost to the sands of time. . .

2022 Kernel Byters - https://github.com/justinottesen/Kernel-Byters

2023 PC Ghosts - https://github.com/andrewkbank/bc2023

2024 Goat House - https://github.com/justinottesen/battlecode24

2025 The Kragle - https://github.com/justinottesen/battlecode25

1.3 Game Overview

This year’s introduction message is shown below:

The bread and food of yore has begun to run out, forcing robot society to adapt. Gone are the
jovial ducks, replaced by steampunk robot bunnies who have converted their need for nutrients into
a reliance on paint. These bunnies have become territorial, forming clans and defense formations
to protect the resource that keeps them running.

For the past two centuries, these bunnies have stayed within their own territory, but clans have
begun to degrade their environment and need to start branching out. Will these clans be able to
expand their territory and generate enough paint to protect their families? Or will they stray too
close to other clans and be wiped out in conflict?

As hinted above, this year’s game was a competition of territory control between paint-crazy bunnies. The
first team to paint 70% of the map would win. Each team had two starting towers, which could produce
resources and robots. These robots had different abilities, but their goal was to work together to build more
towers and paint as much territory as possible.

We saved copies of both the initial and final specs to our repository in case they are taken down in the future.
For a full description of the game, see our repository. If you are new to Battlecode, we highly recommend
this Battlecode Guide, written by XSquare, a long time Battlecode competitor.

3

https://github.com/justinottesen/Kernel-Byters
https://github.com/andrewkbank/bc2023
https://github.com/justinottesen/battlecode24
https://github.com/justinottesen/battlecode25
https://github.com/justinottesen/battlecode25
https://battlecode.org/assets/files/battlecode-guide-xsquare.pdf

2 Strategy & Implementation

2.1 Sprint 1

2.1.1 Setup

The first thing we did was decide how to structure our code. We took a lot of inspiration from XSquare’s
2024 code. We created an abstract Robot class, and created a subclass for each robot type (Soldier,
Splasher, Mopper, Tower). This heavily simplified our RobotPlayer class, and helped us split functionality
between differing robot types2. Along with these classes, we also had utility classes, like MapData, Explore,
Bugpath, and others.

Our first priority was getting a bot that could effectively explore and capture towers. Building towers
would allow our team to increase their resource income and create more robots. We had each tower spawn
a soldier and a mopper who would search for a ruin. We copied the capture logic from the provided
examplefuncsplayer. The soldier was to paint the pattern around the tower, and the mopper was to clear
any enemy paint in the way.

2.1.2 Resources & Towers

We made two observations very early on about resources:

1. It is not worth upgrading towers.

2. It Money towers are always better than Paint towers.

The first one is relatively obvious looking at the costs of new towers vs upgrades. For Money towers, the
following table shows the cost associated with each level of the tower:

Level Upgrade Cost (Chips) Mining Rate (Chips / Turn)
1 1000 20
2 2500 30
3 5000 40

From this table, we can graph the cost and mining rates:

0 2,000 4,000 6,000 8,000
0

20

40

60

80

100

Total Cost

M
in
in
g
R
at
e

Upgrading
New

Figure 1: A comparison of the Chip Mining Rate for the “Upgrading” and “New Tower” strategy

2In hindsight, it may have been even smarter to have another level to the hierarchy where we had Unit as the base class,
Robot and Tower as subclasses, and other types inherit from these. Towers don’t need to do pathfinding, and they can’t really
learn much about the map, so this was bad organization and wasted bytecode

4

https://github.com/IvanGeffner/BTC24

As is clearly shown here, when you have the choice between spending on a new tower, or upgrading an
existing one, there is no reason to upgrade. The same can be said for Paint towers, but the next observation
means we don’t have to worry about them.

Even though paint is arguably the more important resource, Paint towers are useless3 because money towers
actually produce paint more effectively than paint towers. Each tower spawns with 500 paint. Since money
towers produce 20 chips per turn and they cost 1,000 chips, they pay for themselves in 50 turns. So, if a
Money tower calls rc.disintegrate(), we can trade 1,000 chips for 500 paint. If we do this every 50 turns,
money towers have an effective paint mining rate of 10 paint per turn, which is double what paint towers
are capable of.

Here is the corresponding graph to the above for paint production vs chip cost:

0 1,000 2,000 3,000 4,000 5,000
0

10

20

30

40

50

Cost

M
in
in
g
R
at
e

Upgrading
New

Disintegration

Figure 2: The same comparison as the previous figure, this time including the “Disintegration” strategy

There are a few other big bonuses of this strategy:

1. We now have the choice of converting chips to paint. With paint towers, if we have more paint than
we need or can use, we are stuck with it.

2. We no longer have to coordinate what tower types we are building, since we are always building money
towers (we ignore defense towers for now).

3. Since chips are global and paint is local, we can use money towers that are far away from the active
parts of the map to subsidize paint production where it is needed most.

With this, it made a very useful optimization trivial. Marking a tower pattern costs 25 paint, which is
significant considering the soldier’s paint capacity is 200, and it already takes a minimum of 120 paint to
capture a ruin. Since we knew we were only building money towers, we could avoid marking the pattern and
save paint.

As a side note, we thought this strategy was pretty well known, however this ended up winning Gone
Whalin’ the “Most Innovative Breakthrough Prize”, and most teams noticed it when they started doing
it right before US Qualifiers. Overall they simply had a much better bot than us, holding a pretty stable
rating around 1900, and we are happy to have independently found the same insight as such a strong team.

3This is true until you factor in SRPs, but we are getting there

5

2.1.3 Special Resource Patterns

Once SRPs are introduced, the math on paint production changes. Each active SRP boosts paint production
by 3 units per tower per turn. The following table shows how the number of SRPs affects the per turn
production rates of different towers:

SRPs Money Tower Chips Money Tower Paint Paint Tower Paint
0 20 10 5
1 23 11.5 8
2 26 13 11
3 29 14.5 14
4 32 16 17
5 35 17.5 20

As you can see, once there are 4 or more SRPs, paint towers are better suited for their intended purpose.
We decided not to worry about this and stick with our money tower only strategy, to keep things simple.
Plus, we (regrettably) did not prioritize SRPs for Sprint 1, our soldiers simply checked if the current location
could have an SRP and if so, they marked one. SRPs were a huge dominating force, and were very quickly
nerfed after some horrific matches between the top teams in this tournament.

2.1.4 Pathfinding & Map Representation

Units stored their knowledge of the map in memory, however we ended up rewriting this system, so this
will be described further later. Units traversed the map using a BugNav algorithm. We used the BugNav
algorithm from XSquare’s 2024 code, and it worked with minor tweaking. If you have questions about how
to implement this, there was a lecture on it this year here.

Optimal pathfinding wasn’t a high priority this year since ruins/towers guaranteed a lot of open space, and
the specs guaranteed walls to take up less than 20% of the map. In theory, Teh Devs could’ve made maps
with few ruins and many walls, but that never really happened4. Even though something like unrolled BFS
would’ve been optimal, BugNav worked well enough in practice, and because source code for it already
existed, we saved a lot of time not worrying about pathfinding.

2.1.5 Sprint 1 Performance

The bracket for Sprint 1 can be found here.

We entered the tournament as the 55 seed out of 160 teams, with a rating of 1533. Our first match was a 4-1
win against the 74 seed, be right back with a rating of 1483. Their strategy was to do an early rush with
soldiers to try and take out our towers, then produce a single splasher to cover some paint. This worked
against us on the first game, as our starting soldiers got stuck trying to capture an SRP with enemy paint,
and our moppers didn’t help them.

4They did make a “Maze” map, but this really just corralled units rather than making it hard to pathfind.

6

https://github.com/IvanGeffner/BTC24/blob/master/BugPath.java
https://www.youtube.com/live/Mqk50BQH3oQ?si=6qL5WAXmSOS2K3OR
https://challonge.com/bc25javasprint1

The left image below shows the result of our loss, and the right image shows one of our wins. On this
particular map, the opponent’s rush got trapped against a wall, allowing us to expand freely.

Figure 3: Some screenshots from the discussed sprint 1 matchups

Our next matchup did not go as well for us. We faced against the 10 seed immutable, who had a rating of
1737 at the time, and got swept 5-0. We kept up in the early game, our initial soldiers seemed to perform
about equally in finding ruins, but after some starting territory was established, they always pulled away
with a commanding lead. There were three main reasons for this:

1. They prioritized SRPs heavily. In Sprint 1, this was definitely the meta, since the pattern allowed for
an absurd amount of overlap, and there was no cost to making them. This gave them a much stronger
economy than ours.

2. They used their economy better, settling around 50% soldiers, and 25% each of moppers and splashers.
We usually ended up with about even soldiers and moppers with no splashers, since we did not have
time to create splasher logic by this point. Their balance allowed for much better expansion.

3. They explored the map better. Our soldiers would often get stuck on ruins they couldn’t complete
without help, and our moppers were terrible at finding soldiers to help. This meant we got stuck
anytime we saw enemy paint.

We are sure there are many other things they did better than us, but these were the three big differences
that made the others negligible.

7

2.2 Sprint 2

2.2.1 Rewrite

Our sprint_1 code was messy and not well documented, so we did a full rewrite after the submission deadline.
This was in the jottesen_test folder, named so because it was initially a test of a new pathfinding algorithm.
Similarly to sprint_1, each robot type had its own class, along with several utility classes. We ended up
(mostly) sticking with these utility classes for the rest of the competition, so we will describe them here.

2.2.2 MapData

This is really the core of “what the bot knows”. It stores an array in memory, with one 32-bit int per tile
on the map. Below is how we encoded the information in these bits:

Figure 4: The way we encoded map information in bits

We had plenty of bits left over, and many which were initially used and taken out. Upon spawning, each robot
called MapData.updateAllVisible() to load all known information about the immediate surroundings into
the mapData array. Each time the robot moved, it updated only the newly visible tiles. This was a bytecode
compromise, since updating all the visible locations was expensive, but only updating newly visible leaves a
blind spot around the robot. To help mitigate this, we also kept a list of the known ruins, and updated that
list every turn.

2.2.3 Painter

We also created a Painter class, which heavily relied on the MapData class. The Painter held the logic
for which tiles should be painted, and what color should be used. It used the GOAL_* bits from MapData

to encode these. Whenever we saw a ruin, we set these bits in the 5 × 5 area around it. We later did the

8

same with SRPs5. This really streamlined our painting logic, and we didn’t have to worry about checking
the correct color each time.

We also put logic for moppers here, but our moppers were terrible so it isn’t really important to discuss. At
this point, we still didn’t have splashers.

2.2.4 Communication

We added the groundwork for our future communication class, however it was not used at all in this iteration.
We wrote functions to communicate map symmetry, but did not use them until much later in the competition.

2.2.5 Pathfinding

This class was one of the big upgrades of the rewrite6. In the initial bot, we used a pure BugNav algorithm
from a previous year, as mentioned previously. This worked, but was inefficient at times. Since we stored
the map internally, we could simulate doing BugNav, but have the bot actually take shortcuts.

The core idea was that the bot would have some goal target that it was trying to move towards. The
algorithm is loosely described below:

1. Simulate greedy movement towards the target on the internal MapData array. If you hit either the
target or an unknown tile, return and follow that path.

2. If you hit an obstacle, simulate BugNav until you make it past, or you hit an unknown tile.

3. Repeat the algorithm on the result of the above BugNav.

We managed the target destinations by creating a fixed buffer Stack class. Whenever we needed a checkpoint
target (found by the BugNav step), we would push it onto the stack. When we reached that target, we popped
it off and recalculated the path to the next target. Another useful optimization we used in pathfinding was
caching and pre-calculating moves. This let us calculate several moves in advance without wasting a ton of
bytecode on recalculations.

The main reasons this failed were because of high bytecode cost, greedy search instead of BFS7, and bad
handling of the case of maximum stack depth of locations. It would outperform our old algorithm in “easy”
pathfinding scenarios, but would often unpredictably get stuck on the harder situations. Traditional BugNav
from XSquare’s codebase was a more reliable solution.

2.2.6 Opening Theory

Up until this point, we hadn’t really considered any type of coordinated effort. Our entire goal was just to
build up economy, and if you see any enemies, try and beat them. This is the point we started to consider
higher level strategy, so we made a sprint_2 bot to test our changes against the previous jottesen_test
and make sure we were in fact making improvements.

The goal of the opening is to get a tower-count lead over your opponent. SRPs are not worth it since
they take too long to activate, they don’t provide enough resources, your team always starts with more
than enough chips for towers, and there are always available towers to capture (this is something Teh Devs
could’ve, but never really messed with). In the opening, each tower could spawn two robots before running
out of initial paint. The logical choices were either spawning 1 soldier and 1 mopper, or spawning 2 soldiers.
2 soldiers is ideal since together, they could capture a tower without any surrounding paint in 12 turns.
However, a mopper would allow the its soldier partner to capture a tower with enemy paint in its pattern.
This provides quite the dilemna and was one of the most interesting part of optimizing strategy.

After Sprint 1, we were made aware that rushing with a soldier-pair in the opening was a viable strategy.
This provided an elegant solution to the opening dilemna: the soldier pair is better.

5This bot did not bother to paint SRPs, but still heavily outplayed the previous version
6It was honestly a waste of time since we ended up scrapping it later. It used too much bytecode and was too buggy.
7During the final tournament stream, the third place finishers Om Nom mentioned they used this optimization of BugNav

and BFS, so it seems we turned back from mining right as we were about to hit diamonds. Definitely a skill issue on our part

9

Each tower spawns 2 soldiers. The first priority of the soldier pair is always to capture an “uncontested”
ruin8. Until the soldiers finished the first ruin, they were in “opening mode.” However, in the case that the
soldiers only found ruins that were “contested,” they would rush. This is theoretically the perfect scenario
for rushing since the best counter to rushing is to capture a ruin as fast as possible. However, if every nearby
ruin is contested, rushes become stronger since it is more difficult to capture ruins.

Figure 5: Both soldier pairs quickly capturing uncontested ruins by round 17

Figure 6: A soldier pairs finding an enemy tower before an uncontested ruin. Note that enemy soldiers aren’t
close to capturing a ruin yet.

This opening strategy was wildly successful on the ladder. On 90% of the test maps, the soldier pair would
find an uncontested ruin and capture it before turn 20. Our logic didn’t result in the soldiers rushing often,
but when they did, it was often successful in giving our team a large lead. It wasn’t infrequent to see our
team with a marginal lead over top teams out of the opening.

Our opening strategy remained unchanged after Sprint 2. This lead to some pitfalls. First, requiring the
soldiers to pair up meant that if they found an uncontested ruin, they could capture it quicker than if
they split up and both found uncontested ruins. However, requiring the soldiers to pair up resulted in high

8A ruin with no enemy paint blocking the pattern

10

variance: sometimes, they would miss an obvious ruin since they didn’t spread out. Secondly, since rushes
happened so infrequently, we never had good logic for what to do after a rush completed, and relied mostly
on the rush being disruptive enough to give us a massive lead that we couldn’t fumble.

2.2.7 GoalManager

The last big change we made before Sprint 2 was introducing the GoalManager class. We previously were
storing the goal location as a single MapLocation and the type as an enum. However, this lead to many
problems. Often, ruins would be abandoned when robots went back to get their paint refilled, since they
were the only robot that knew it was in progress. After refilling paint, they would act as if they were a new
soldier.

We decided to use a stack for the goals, giving robots a lot more choice in their intended actions on goals.
This ended up being a huge improvement, and we will definitely be bringing an enhanced version of this
back in future years.

2.2.8 Paint Towers?

At some point, we made a change where we built some paint towers. I forgot we did this, but we ended up
reverting this decision later. As explained in previous sections, money towers are simply better until you have
4+ SRPs. We did not prioritize SRPs whatsoever, so paint towers didn’t make any sense for us, especially
since we had robots fighting over whether to make paint or money towers, wasting time and resources.

2.2.9 Sprint 2 Performance

The bracket for Sprint 2 can be found here.

We entered the tournament as the 63 seed out of 183 teams, with a rating of 1559. Our first match was a 5-0
win against the 66 seed, achromatic with a rating of 1551. There was not much of note in these matches,
we outplayed them by a wide margin, expanding faster and winning any direct territory battles.

Our second match was the opposite, we were against the 2 seed Super Cow Powers with a rating of 2017.
We were no match for them and lost 5-0. While they simply did everything better than us, the big details
were that they were much more purposeful with their expansion and we had too many bugs that caused us
to sit idle doing nothing.

11

https://challonge.com/bc25javasprint2

2.3 US Qualifiers

Between Sprint 2 and the US Qualifier tournament we made our biggest improvements. We came out of
Sprint 2 at 1570 ranked 63rd, and finished the competition around 1800, ranked 27th. Granted, our rating
after Sprint 2 did not reflect our changes since we made several upgrades right before the submission deadline,
but this is where we really started to have a chance of making Finals.

2.3.1 Floating Resources

Thanks to our excellent opening strategy, we often found ourselves with a resource lead, even against higher
rated teams. However, our bot was fantastic at throwing leads. We would quickly get out-expanded in the
mid-game, and we would float9 tons of paint in all stages of the game.

One of the unforeseen issues with only using money towers is that if they get stuck with less than 100 paint,
they can never build units. This became a major problem when our soldiers would all refill on paint and
leave every money tower with around 70 paint. Even with only 10 towers, this would result in us floating
700 paint. Since we were basically the only top team completely reliant on money towers, we could have a
paint lead on paper, but if all of that paint was not spendable, it wasn’t a paint lead in practice.

Figure 7: We have a sizeable resource lead against Silicon Geese. However, we are floating thousands of
paint in towers that could go towards making robots.

The solution was quite simple: make refilling soldiers leave precise amounts of paint required to build robots.
Obviously this was a trivial fix, but the resource efficiency theory behind it was the important part.

2.3.2 Reducing Idle-Time

Besides floating resources, the other main culprit for our bot throwing leads was idle time. Often, we’d
find ourselves with not just a resource lead, but a robot count lead. On paper, the team with more robots
is always at an advantage. However, a robot-count lead means nothing if half of your robots are derping
around.

9terminology from RTS games meaning to be in possesion of unused resources. You always want to fully utilize your resource,
so floating resources is bad.

12

Figure 8: A gaggle of soldiers and splashers in the upper right derping around far away from where they
could be useful...

The easiest idea our team had for reducing idle time was communicating battlefronts. Most games that made
it to the mid/late game would result in a battlefront where both team’s robots would clash near the center
of the map. Without communication, our robots would explore around the map, wasting precious time, until
they stumbled across a battlefront. With communication, our robots would always have knowledge of the
nearest battlefront, so they could waste as little time as possible not contributing to the main fight.

Even though our battlefront communication was mostly patchwork, it still gave massive improvements to
our bot. The bots having even a vague idea about where the battlefront was reduced their idle explore time
massively.

Finally we came to the obvious realization that other teams didn’t bother having their robots refill on paint.
Our robots would spend about half of their lifetime traveling back to towers and waiting around towers for
paint. This meant that our robots would spend about half of their lifetime in an idle state, not contributing
anything.

Figure 9: 10 soldiers waiting for a refill on a money tower that is out of paint...

Only after we started looking carefully at what other teams were doing did we notice that no other team
bothered having their bots refill on paint. This was such an obvious improvement: It cuts down on robot
idle time, and allows robots to perform longer tasks at the cost of chips. You would only really want to
preserve high-value robots, which was just the splashers.

This change came way too late in the competition and was a stark reminder to pay careful attention to other
team’s strategies. Other teams beat your bot for a reason, and the easiest way to improve is to copy what
they do better than you.

13

2.3.3 Qualifiers Performance

The bracket for the US Qualifiers can be found here.

Thanks to our bots ability to consistently obtain a lead out of the opening and our improved efficiency, we
were the 10th ranked US University team. Considering 12 US University teams make the final tournament,
we were excited about our prospects of making the final tournament. However, we knew that every US
University team ranked between 9th and 16th were extremely close in strength, and were likely separated
more by auto-scrim luck than strength.

The US qualifier tournament is a traditional double-elimination tournament. This means 8 teams qualify
for the tournament by winning in their top 16-winners matchup, and 4 teams qualify for the tournament
by wining their top 24-losers matchup. The way the team strengths were distributed, basically only the top
16 teams had a chance of qualifying. This meant that there were 4 “quadrants” of 4 teams, where 3 teams
would make the finals. Our quadrant looked good since it included the 2 seed, the 7 seed, the 10 seed (us),
and the 15 seed. If everything went according to seeding, we would lose our matchup against the 7 seed,
then win our matchup against the 15 seed to qualify for the finals.

We even believed we had a chance of upsetting the 7 seed, since the day of the submission deadline, we went
7 for 13 against them in scrimmages. However, our game against the 15 seed would not be free, as we had
gone 5 for 17 against them the week leading up to the tournament in scrimmages. We knew the tournament
was going to be a bloodbath, and several teams of “Finals Caliber” would not make the cut.

Disaster struck for us when the 15 seed, podemice miraculously upset the 2 seed, JDK? More like IDK.
We narrowly lost our matchup against the 7 seed, placeholder name 2, in a score of 3-2. We were then
given the daunting task of beating the 2 seed, JDK, More like IDK in losers. Tragically, we lost again
3-2 to be the only top 12 team not to make the finals.

2.3.4 Tournament Structure Suggestions (and Complaints)

There were a few factors that made this result particularly bitter. The first was the knowledge that both
of our decisive sets were 1 game away from flipping. The second was that we didn’t get to watch our losses
on the stream, despite both games deciding a team to qualify for the finals10. The third and final factor
was that we believed our team was top-12 strength. It just so happened that podemice was horrifically
underseeded, since they were very clearly also top-12 strength. As a result, our “quadrant” of the bracket
was far and away the hardest one.

The traditional bracket is designed such that the higher seeds will always have the better matchups if no
upsets occur. This is passable in a single-elimination bracket (such as March Madness), since a lower-seed
inheriting the bracket positioning of a higher-seed only punishes the losing team. However, in a double-
elimination bracket, upsets mean that a higher-seed inherits the bracket positioning of a lower-seed, which
can easily screw teams over. Despite going 2-3 with the both 2 and 7 seeds, never losing a single round
against any other team, and going into the tournament ranked in the top 12, we did not finish in the top 12.

Our proposed solution to this issue is to reseed when teams drop to the losers bracket. This means that
instead of a rigid bracket, the higher seeds will always have the better matchups regardless of whether upsets
occur. As a result, instead of the 2 seed and the 10 seed battling it out for losers top 12, the 2 seed would
get reseeded to play the lowest available seed (which would’ve been the 17 seed). This better ensures the
true top-12 strength teams qualify. This does punish the 17 seed however, since their matchup goes from a
close game against the 15 seed to a brutal matchup against the 2 seed, so this system is not perfect either.
Someone always gets the short end of the stick.

At the end of the day, we could give all the bracket-luck excuses in the world. However, that wouldn’t
change the fact that we couldn’t win the sets that mattered most. podemice, JDK? More like IDK, and
placeholder name 2 all deserved to make the finals over us, and we have nothing but the highest respect
for them. Seeding doesn’t matter if you just win the damn games. In the words of Ichiro Suzuki, ”I like
imperfection. Because one is imperfect, it makes you want to keep moving forward.”

10We think the qualifier stream should start earlier in the bracket, and stop once the qualifiers are determined. Otherwise,
we just end up watching the finals twice, and not a single streamed game “matters” in the qualifier tournament

14

https://challonge.com/bc25javausquals

3 Conclusion

3.1 Reflection of our process

Overall, we exceeded all of our expectations this year. We did an excellent job of identifying reusable code
from XSquare, and modifying/augmenting it for our own purposes. This allowed us to get out a high-quality
bot much quicker than previous years.

From there, we did a good job of identifying key, game-specific tasks to implement, such as capturing towers,
basic combat, and opening logic. This allowed our team to achieve good results quickly, as these tasks had
the highest reward for the lowest effort.

Finally, we were able to make consistent improvements to our bot by identifying inefficiencies in resource
management and idle time. These efforts were all it took for our team to make the leap to being a top-level
team.

However, there were certainly areas where we could improve. Justin spent a lot of time re-doing XSquare
code such as pathfinding when realistically, he couldn’t really improve it and ended up wasting a lot of time.
Andrew spent a lot of time on the SURVIVE behavior of bots, which was not an efficient use of his time
since the SURVIVE behavior never really impacted the result of any matches. It was Matt’s first year, so
he was climbing the learning curve while also being busy with class.

Additionally, the way we ended up dealing with goal objectives was messy. Each robot was able to keep track
of multiple different goal objectives, however, we didn’t define a formal framework for how to resolve having
multiple different goal objectives. As a result, our goal resolution was a bunch of unorganized if-statements
that was difficult to modify/debug. We could’ve benefited greatly from a formal goal resolution framework,
so we will give one in the next section.

Finally, we did not pay that much attention to other teams’ strategies. Copying other teams’ strategies is a
Battlecode staple because it allows you to easily identify improvements for your own bot that other teams
have conveniently tested for you. Our team neglecting this strategy resulted in a unique bot. However,
it also resulted in our bot lacking obvious features such as ignoring refills, having a good build order, and
having soldiers seek out enemy towers to kill.

3.2 Reflection on the game

The game this year was probably the best game we’ve taken part in. The 2025 game did a great job removing
all of the game elements that made the last 2/3 years micro-heavy games while also adding new elements
that made decision-making interesting.

Opening theory was interesting since choosing between double soldier openings, rushing, mopper openings,
or even SRP/splasher openings was a non-obvious choice.

Paint management was a very interesting task since you had to balance normal pathfinding, staying on allied
paint, and choosing when to paint tiles where no option was the obvious choice.

Build order being an essential part of the gameplan was back from 2021, since you always had the option to
build every robot type and every tower type. Each team had to tackle difficult questions such as “when do
we start building splashers?” or “when are defense towers worth it?”

SRPs were a great addition, since they gave access to an NP problem (a packing problem) that could
be solved at any time for a small economic gain. However, since it was nearly always more worth it to
capture more towers, it provided an interesting choice: explore for ruins, or build SRPs. Additionally, since
finding the optimal SRP placement is an NP problem, it meant that every team could have slightly different
approximation algorithms for SRP placement.

Overall, Teh Devs did a fantastic job releasing patches. They did a great job of nerfing overtuned strategies
such as SRP spam or rushing while not making those strategies useless with the nerfs. However, we have
some gripes with how they treated defense towers.

15

Historically, static defense in Battlecode was never a meta-relevant strategy. In 2022, watchtowers were weak
since they were a large investment, which was a death sentence in that year’s game since cheap units could
snowball very quickly. However, the 2025 game was the perfect opportunity for static defense. Robots not
being able to engage in direct combat with each other meant that offense and defense could be separate
entities, i.e.: a good offense wouldn’t just automatically double as a good defense, which would’ve given
static defense a unique role. Additionally, map control was crucial to the game, so static defense having
higher power in exchange for not being able to move would’ve been an appealing trade-off.

However, Teh Devs caved to early complaints about defense tower being too strong before sprint 1 even
happened. The defense tower nerfs came too early in our opinion, since they never saw tournament results,
and Teh Devs didn’t have faith in the inherent weaknesses of static defense. In the end, defense towers just
turned into slightly different money towers.

Static defense is a fascinating game aspect that we believe still hasn’t been fully explored by Teh Devs.
Static defense’s polarizing strength is offset by a resource investment and the opportunity cost of investing
in resource-economy instead. In RTS games, the counter to static defense is to disengage and gain an
economic advantage since the opponent put a large investment in static defense. We believe this would add
an extra dimension to any meta, since every Battlecode meta usually devolves into “always attack.”

Overall, Teh Devs made massive improvements this year. They upgraded to a newer Java version, they
added Python compatibility, they updated the client, and they made the best game in years. They deserve
all the praise, and we are optimistic they can keep the good momentum into next year.

3.3 Advice

We have learned a lot through our years of Battlecode. This includes resources that we’ve compiled from
across many teams’ experiences. If you are reading this, it’s likely you aren’t actively competing. Here’s
some advice you can either actively follow outside of competition, or keep in mind for the next upcoming
competition.

1. Spend time preparing - Before the competition starts, read Postmortems, look at code from other
teams, and make a general plan for how you want to break up work amongst your team. You can even
create a structure for your code ahead of time. For us, using a Robot base class and different utility
classes (MapData, Communication, etc.) seems to have worked the best. Additionally, there are aspects
of Battlecode that remain constant through nearly every year. They are as follows.

� The Map - The Battlecode map is (nearly) always a coordinate-grid of size between 20x20
and 60x60 inclusive. For fairness, the map is always symmetrical either by rotation or reflec-
tion. Essentially all top teams have some sort of map data structure in every bot that stores all
known information about the map. Being able to identify which of the 3 symmetries (reflection
over x-axis, reflection over y-axis, and rotation) the map contains, and extrapolating known in-
formation with known symmetry is Battlecode 101. Example code for map representation and
symmetry identification from XSquare can be found here and here. Example code for our map
representation and symmetry identification can be found here.

� Bytecode - The Battlecode engine has historically been written for Java, and it appears it will
continue to do so. Teh Devs always put hard limits on computation to encourage competitors
to come up with their own solutions instead of solely relying on well established algorithms.
They enforce computation limits using Java bytecode. Historically Teh Devs have put bytecode
limits of around 7500-1500 per robot where 1 bytecode is the approximate equivalent to a single
assembly-level instruction. Even performing simple tasks such as breadth-first-search on a 20x20
tile map will use a robot’s entire bytecode budget. As a result, understanding how bytecode works
and knowing bytecode “shortcuts” is crucial to squeezing the most performance out of your puny
bots. Additionally, having an understanding of bytecode will help you make decisions on whether
an algorithm is feasible to implement under particular bytecode restrictions (ie: Can I implement
A*? Spoiler: probably not). To read up on bytecode, we suggest this and this (section 6) as
starting points.

16

https://github.com/IvanGeffner/BC25/blob/master/basic45/Map.java
https://github.com/IvanGeffner/BC25/blob/master/basic45/SymmetryManager.java
https://github.com/justinottesen/battlecode25/blob/main/java/src/quals/util/MapData.java
https://cory.li/bytecode-hacking/
https://battlecode.org/assets/files/battlecode-guide-xsquare.pdf

� Pathfinding - Your robots need to know how to move from point a to point b in the most efficient
path. Battlecode usually breaks down into either binary passability (ie: walls or no walls) or
variable passability (ie: various amounts of rubble that slow down bots). In games with binary
passability, most top teams default to using Bugnav. Here is XSquare’s old implementation of
Bugnav. In games with variable passability, most teams default to a greedy movement algorithm
(ie: always move in the desired direction). However, many top teams optimize their pathfinding
algorithms by making “unrolled”11 versions of breadth-first-search or Dijkstra’s/Bellman-Ford
algorithm for binary and variable passability respectively. Here’s Just Woke Up’s Python script
for generating Java code for unrolled breadth-first-search.

� Decision-making - Your robots often have numerous goals they would like to fulfill. It may be
tempting to tack on goal-types as you think of them, but this results in messy code that is difficult
to modify. Additionally, it may be tempting to only store the current goal, but this results in your
robots have very short-term memories (ie: they may forget their current task if they get initiated
in a fight that overrides their current task). We propose the following framework:

Goal Priority Queue - Each Goal contains the goal-type and the MapLocation where the goal
is to be fulfilled. The priority for goals may depend on the game. For example, goal-types may
be simple enough that they can be enumerated such that higher-numbered goals have a higher
priority. However, if goal-types require more complicated priority, you can manually define them
yourself.

Adding, Executing, and Stopping Goals - Every goal type should have a shouldStartGoal,
executeGoal, and shouldStopGoal methods. This modular design allows for easy modifications
and additions to your goal framework.

Note that this framework only applies to goal types that naturally interfere with one another. If
a robot can fulfill multiple goal-types at once (ie: towers/archons attacking + spawning), those
should each have their own priority queue.

� Micro/Macro - Micro and Macro refer to terminology from real-time-strategy games. Since
Battlecode plays similarly to an RTS game, Micro and Macro are always applicable. Micro refers
to fine-controlling singular robots, mostly to optimize robot-to-robot combat. Particularly, if a
robot can fight another robot, there are certain movements/maneuvers robots can take to swing
a fight in their favor. These include, but aren’t limited to, weaving in and out of a robot’s
attack range, splitting robot groups to avoid area-of-affect attacks, kiting enemies, and pushing
an engagement when a robot senses it has many allies. Macro refers to controlling army-level
actions. These include, but aren’t limited to, managing robot production, choosing when to
expand, saving/spending your resources properly, and executing long-term strategic plans. While
you can’t explicitly plan a micro or macro strategy since they depend heavily on the game, it helps
to have a framework for both. Here is the infamous XSquare micro, a java file that has crushed
many-a challenger. Nearly every other top team has benefited from copying the XSquare micro
to some degree, and here’s why:

(a) When to initiate micro (doMicro) - The conditions to initiate micro are usually whether
your robot can see enemy robots. However, this can be expanded to include cases such as
having low hp and having memory of nearby enemies that may be out of vision.

11Loops take extra byetcode overhead to run. If the number of iterations of the loop is always the same, you unroll the loop
by manually writing every line of code the loop would’ve executed. This results in horrific looking code that is very bytecode
efficient.

17

https://www.cs.cmu.edu/~motionplanning/lecture/Chap2-Bug-Alg_howie.pdf
https://github.com/IvanGeffner/BTC24/blob/master/BugPath.java
https://github.com/Tim-gubski/BattleCode2025/blob/main/scripts/pathfind.py
https://github.com/IvanGeffner/BTC24/blob/master/MicroManager.java

(b) The micro array (computeMicroArray) - The micro array contains the heuristic infor-
mation of all 9 movement options (moving to the 8 adjacent squares or staying still). This
allows for easy updates to the heuristic information and comparing heuristic scores via loop
unrolling.

(c) Heuristic information (MicroInfo) - The heuristic information stores all factors that
make a tile appealing/dangerous to move to (ie: number of nearby enemies, distance to
closest enemy, etc). Then, once all the heuristic information is calculated, the isBetterThan
method can easily compare two MicroInfos.

Note that this micro only involves movement and not the actual attacking. This is because
decision making for who and when to attack is usually straightforward (target the lowest hp
enemy possible, attack whenever possible). Also note that XSquare micro could be completely
rewritten with our Goal Priority Queue framework (we might do this next year).

Macro is much more difficult to make a general framework for, since robot-spawning, resources,
and high-level strategies vary drastically year-to-year. However, if you use ample communication,
globally available info (such as map size), and the Goal Priority Framework, you should have no
issue implementing the macro strategy you desire.

2. Budget Your Time - As mentioned previously, one of our big downfalls this year was spending a
lot of time to perfect things that either don’t need to be perfected. Battlecode is a short competition,
and no one creates the perfect bot. Often the best tasks to do are the tasks with the best effort-to-
result ratio. This frequently ends up being the simplest things, such as hard coding or using greedy
algorithms.

3. Prioritize Economy - Our workflow generally revolves around economy. The first thing we always
do is plan how to get a strong economy as soon as possible. Battlecode games are often snow-bally,
where any small resource lead can very quickly turn into a large advantages down the line. As a
result, highly optimizing the beginning of games for resources is the best way to kickstart your team’s
snowball. Once you have done this, you can branch off into working on converting the economy into
the win condition. Additionally, Teh Devs have historically shown favoritism to teams that prioritize
economy-based gameplans (as opposed to rush/attack based gameplans) by making maps in the finals
tournament larger and slower.

4. Learn from Others - Watch replays, collaborate in the discord, talk with your teammates. Chances
are you can learn something from every team out there, whether it is an insight or strategy they use,
or some niche condition that breaks your bot. See where you are strong, see where you are weak, find
out why you are weak, and figure out how to improve. Many top teams are very friendly, so don’t
be afraid to ask them what strategies they use on the Discord. Getting Battlecode clout is nearly as
important as winning, so they will be happy to flex their superior Battlecode knowledge.

5. Stand on the Shoulders of Giants - Similarly to the above, use every resource available to you.
There are many past repositories that have been posted on the Discord. We view XSquare as the
God of Battlecode. He has several years of his past bots posted here, and has consistently been on top
of the leaderboard. His micro, exploring, and pathfinding are all unmatched.

6. Test your code - We have never bothered to write unit tests, but we realistically should. At minimum,
run several games, closely analyzing whatever behavior you changed. Make custom maps, designed
to expose your problems. Save old versions of your bot and compete against them. Run scrimmages
against other teams. The more your code runs, the more problems you will find and fix. DO NOT
upload untested bots right before important submission deadlines. At minimum, test against older
versions of your code.

7. Use Git Effectively - Git can be intimidating for first time users, but once you understand a few
basic commands, it is really not too difficult. I cannot emphasize this enough, learning command
line git will save you and everyone you work with so much time and headache in the long
run. GUIs are good for the simple stuff, but you can break things in unimaginable ways by clicking

18

https://github.com/IvanGeffner

buttons that you don’t fully understand. Your team should have an agreed upon criteria for branching,
commits, and reviews so that everyone is on the same page. Our recommended git workflow is below12:

� When you have a new feature you want to add, create a branch for it. This can be done as follows:

git fetch

git checkout -b <branch-name> origin/main

git fetch will update your local reference to the remote repository (hosted on GitHub or else-
where), and git checkout -b will create a branch named <branch-name> from the most up-to-
date version of main that is in origin (the remote repository). Note that depending on how you
have it configured, the main branch may be called master instead.

� Make incremental progress on the code, and create a new commit every time you hit a “check-
point”. It is up to you to determine what that means, but I usually figure if I do a test run, its
probably a good time for a commit. You can create a commit by doing the following:

git add <path-to-changes>

git commit -m "<your-commit-message-here>"

git add will “stage” the changes at <path-to-changes>, which is basically “preparing them to
be committed”. If you don’t want to manually add each individual file, you can do git add . to
add all changes in the current directory, or git add <path-to-folder>/* to add all changes in a
folder. If you do either of these, you should run git status after, and make sure the files listed as
“staged” are the ones you intend to commit. If they are not, you can run git restore --staged

with a path to remove it from the staging area. git commit creates a commit, and -m adds the
commit message.

� Once you have finished the feature you created the branch for, and have made all your commits,
you are ready to merge back into main. There are several ways of doing this, but our personal
preference is using a rebase strategy, so we preserve a linear commit history without duplicate or
merge commits. When you are ready to merge your code into main, do the following:

git fetch

git rebase origin/main

git push -u origin <branch-name>

While the git fetch and git rebase steps are not fully necessary, they will save you from many
problems in the future, and it is usually better to run them anyways. git rebase moves the base
of your branch to origin/main, i.e., it takes the changes you made, and tries to re-apply them on
the most up to date main. Be sure to read the output of the rebase command, as it may
tell you there are conflicts. If so, open up your editor, most of them will have a conflict resolution
tab, and fix the conflicts by choosing what to keep, change, or take out. This will only be necessary
if you have multiple team members in different branches working on the same part of the code.
Once you fix the conflicts, run git rebase --continue and repeat if necessary. git push sends
your changes to the remote (GitHub), and -u origin <branch-name> tells GitHub what the
name of the branch should be. Make sure the <branch-name> you give is the same as what you
have locally. It shouldn’t cause any problems, but it will certainly be confusing.

� Your branch should now have the latest version of main with your new changes pushed on the end
of it. To get these changes in main, you should create a “Pull Request” on GitHub. You can do
this either by following the link that shows up after you push, or going to GitHub and opening the
“Pull Requests” tab. Add a name and description, and create the pull request. Your teammates
should be able to view and comment on your changes. If you configure things correctly (and pay
a monthly fee which we did not), you can pretty easily set up rules for GitHub to restrict merges
until approval quotas have been met. When you are ready to merge the pull request, there is a
big green button that shows up. We recommend using the “Rebase and merge” strategy,

12We outline this in a lot of detail since we anticipate a lot of teams are using Battlecode to learn team programming, as we
did in previous years.

19

so it preserves all the commits. This doesn’t really matter most of the time, but it is annoying
when you want to see what order you did things, or revert changes, and there are messy merge
commits that make it hard to tell what was added.

� Make sure you run git checkout main and git pull to get the most up to date version of the
code locally.

Again, this is just personal preference, and there are many other more detailed and thorough guides
on similar strategies. What matters most is that you find something that your team agrees on and
works for you. We have had similar success in the past with everyone battling it out on main with no
branches, so with a small enough team, no strategy can work as well.

Obviously, there is more to Battlecode than just these points, but these are the biggest lessons we have
learned and hope you find useful as well.

3.4 Until Next Year. . .

We hope you found this writeup useful, entertaining, inspiring, or positive in some other way. We have really
enjoyed the ups and downs of Battlecode every year, and will definitely continue competing even after our
eligibility is gone. Next year is definitely the last year for Justin, and probably the last year for Andrew,
and we are really hoping to make something special happen. After that, we will make it our mission to win
a sprint tournament, we need that discord role.

Figure 10: Subscribe to caterpillow

As always, thank you to Teh Devs for creating and running such a fantastic competition this year and
every previous year we have competed. Huge thank you to all the other teams we mentioned previously in
this document, particularly XSquare for his 10 year commitment to dominating the Battlecode leaderboard
and open sourcing his code every year. Congrats to the winners, Just Woke Up, after an insane set of
rematches against Confused, an impressive individual competitor, and podemice with the upset of the
year in US Qualifiers.

We are incredibly excited for next year, and hope to continue our trend of improvement.

20

	Introduction
	Our Team - The Kragle
	Past Performance
	Game Overview

	Strategy & Implementation
	Sprint 1
	Setup
	Resources & Towers
	Special Resource Patterns
	Pathfinding & Map Representation
	Sprint 1 Performance

	Sprint 2
	Rewrite
	MapData
	Painter
	Communication
	Pathfinding
	Opening Theory
	GoalManager
	Paint Towers?
	Sprint 2 Performance

	US Qualifiers
	Floating Resources
	Reducing Idle-Time
	Qualifiers Performance
	Tournament Structure Suggestions (and Complaints)

	Conclusion
	Reflection of our process
	Reflection on the game
	Advice
	Until Next Year…

