
Battlecode 2020 Postmortem

The High Ground (Eli Lifland, Aaron Ho, Alex Hoganson)

1 Introduction to the game

This year, the goal of the game was to have the last HQ remaining. An
HQ was destroyed either by being flooded with water or by being buried with
dirt. The map consisted of varying levels of elevation, with lower elevation tiles
flooding first as the water level rose. Most units could only move or build onto
tiles that had a similar elevation to the one they were currently on and robots
that ended up on a flooded tile were destroyed. The resource used to build
robots this year was called soup and was scattered throughout the map. There
were 3 types of units belonging to a team:

• Miners: Can only be built by the HQ. Can mine soup from the map and
build buildings.

• Landscapers: Can change the elevation of tiles by digging and depositing
dirt.

• Drones: Can move on any elevation, even over water, and pick up and
drop other units. Slower than miners and landscapers since if they weren’t
they’d be insanely overpowered.

Finally, there was 1 neutral unit type: cows. Cows move randomly around
the map and cause pollution in the area around them, making units near them
move slower. Miners can build 5 types of buildings:

• Refinery: A place for miners to deposit soup they have collected from the
map.

• Design School: Produces landscapers.

• Fulfillment Center: Produces drones.

• Net Gun: Can one-shot kill drones in a relatively small radius.

• Vaporator: Produces 2 soup per turn for a cost of 500 soup.

The HQ had the capabilities of a Refinery and Net Gun built in. All buildings
could be buried if enough dirt was placed on them by enemy landscapers without
being removed by friendly landscapers.

1



Finally communication was done through a “blockchain,” in which units
could bid soup to send messages, and the top 7 per round were published
anonymously to both teams. This meant that in principle it was possible to
mess up your opponent by either spending a lot of soup to spam messages and
prevent them from communicating, or mess up their communication by sending
messages they would interpret as their own.

2 Week 1

For the first week, we were some combination of busy and lazy. We cloned
the lecture player to a git repo and that was about it. We decided not to submit
a player for the sprint tournament and eagerly awaited to see the meta from the
results instead.

3 Sprint Tournament

In the sprint tournament we ended up seeing three main strategies:

• Rush/turtle: Run a miner to the opponent’s HQ, build a Design School
and perhaps Net Gun, then bury the opponent’s HQ with landscapers
(See Figure 1.). In case this doesn’t work, turtle as described below.

• Turtle: Build a circle (or something resembling one) of landscapers around
your base, and build a huge wall to survive the flood as long as possible.
See Figure 2.

• Terraform/attack: Utilize landscapers to “terraform” the whole map,
making it walkable for all your units. Teams would build up their “lattice”
to a height such that it wouldn’t flood for a while, then place buildings
on this lattice. Particularly, vaporators were a powerful building for this
strategy, allowing for a huge economy to be built up and producing a snow-
ball effect. Soon before the lattice would flood, terraform/attack teams
would “crunch” with their drones, removing enemy landscapers from their
turtle wall and replacing them with their own, then burying the enemy
HQ. Another component of this strategy was a drone harass, in which
teams would send drones toward the opponent HQ to find enemy units
and flood them. This proved to be effective at limiting the opponent’s
economic capabilities. See Figure 3 for an example win.

The first place team was Bruteforcer, who utilized the terraform/attack
strategy very well. Second place was Battlegaode, the best rush/turtle team.

4 Week 2

After the sprint tournament, the devs nerfed vaporators from cost/production
of 1000/7 to 500/2. However, we and others on Discord thought that ter-

2



Figure 1: Battlegaode’s rush
burying the enemy HQ.

Figure 2: Battlegaode turtling af-
ter a failed rush.

Figure 3: Bruteforcer burying the opponent after terraforming the map.

raform/attack was still viable as it still paid for itself within 250 rounds. While
we still thought that rush/turtle and terraform/attack were the two best strate-
gies we had seen, we decided to first improve the lecture players basic turtle to
get our bot up for some scrims. We added some basic infrastructure such as
bug navigation and basic communication, and improved the lecture player in a
few ways such as making miners run toward nearby soup.

As we were making these basic improvements to our bot, we noticed that
we kept losing to rush/turtle teams, and that lots of rush teams were rising up
the leaderboard with former top terraforming teams Bruteforcer and Super
Cow Powers ineligible for future tournaments. Rush bots did very well in this
period in part because rushes are quicker and easier to code than an equally
powerful rush defense or terraforming bot. Additionally, the early map pool

3



Figure 4: Java’s wall and the open space inside it.

was weighted toward small and easily pathable “rush-friendly” maps.
The night before the seeding submission, we realized we didn’t have enough

time to code a good enough terraforming bot and we would lose to both good
pure turtles and rush/turtles. We strongly valued a high seed and reasoned that
we would eventually want a good rush bot to test against anyway. We quickly
coded up a rush bot, submitted it and woke up to being 2nd place on the
scrimmage server! This confirmed our suspicion that rush bots were relatively
easy to code, and we spent the rest of the day of the deadline ironing out some
bugs. One thing that separated us from some other rush bots is that our rush
miner would first run to the middle of the map in an attempt to determine which
of 3 possible symmetries the map was, and then rush toward the opponent. This
made our rush worse in cases when we would have guessed the right symmetry
anyway, but more consistent overall.

5 Seeding Tournament

Although a lot of the top teams were rush/turtle, the devs indirectly nerfed
rush through large and hard-to-path maps in the seeding tournament. Some
very strong rush teams were knocked out pretty early, and we barely scraped by
in several sets before getting eliminated in 4th. We were fairly happy with this
seed. The team which got 1st was smite, who combined a decent rush with a
post-rush turtle particularly robust to the new maps. 2nd place was Java Best
Waifu, who had taken the mantle as the top terraform/attack team. We will
refer to them as Java from now on. Java had a unique strategy of leaving area
near their HQ open as they built a 7x7 square wall around their HQ, allowing
them to build buildings in the open space inside the wall before they really had
terraforming going. This wall and open space is shown in Figure 4. Once they
got the wall and some vaporators up, they did very well, but in a few games
they failed to get their wall up giving smite the victory.

4



6 Week 3

We thought that although smite got 1st place in the seeding tournament,
Java’s terraform/attack variant was the future. This was due to Java’s first
place rank on the scrimmage ladder, and the potential room for improvement in
the terraform/attack as opposed to rush/turtle. So, we decided to shamelessly
copy Java’s strategy. As Steve Jobs said, “Good artists copy. Great artists
steal.” We pulled up some replays of Java’s games and worked on a new bot
for several days until we imitated it as closely as possible, except we made a few
different decisions:

• We built in a nicer pattern than them. This meant that we were less likely
to block ourselves in, but would struggle more with maps where a good
chunk of the terrain wasn’t terraformable.

• We had a cleaner build order than them, perhaps due to the build order
prioritization system we set up, where we had a desired unit composition
and robots would have a priority representing the minimum soup required
to build. A higher ratio of actual units of a type to desired units of a type
meant a higher soup priority.

Similar to Java, we set up a scoring system for landscapers such that they
would dig from and deposit to the highest-scoring tiles. However, our system
was a bit less robust than theirs, perhaps due to the fact that they had a clever
way of checking all the locations within sensor radius with a small amount of
bytecode. We struggled to check all the locations in our sensor radius before
running out of computation.

Our bot was also similar to them in a funny way: both of us completely
ignored cows and pollution. Due to the small amount of cows on most maps
and lots of other teams drowning cows for us, it wasn’t too big a deal in most
games. We always had higher priority items to work on.

During Week 3, turtle and rush/turtle teams began to more reliably attempt
to get enough economy to build up drone walls. If a full drone wall was formed
around your turtle as in Figure 5, it was impossible to crunch on as drones
could not move through other drones. Even a partial drone wall could impede
the progress of a crunch, and even just a few drones could be used to drown
enemy landscapers dropped on the wall. Drone walls could only be defeated by
terraforming to the other team and building net guns to kill the drones.

Some teams took defending their turtle to a bigger extreme. A 4th archetype
began to become pretty popular in Week 3: mini-terraform/turtle. Teams such
as smite and Bowl of Chowder would terraform just enough to build up an
economy and defenses of drones, net guns and landscapers around their turtle.
They called their terraforming formation a cookie, and we refer to this strategy
as such from now on. When the cookie was fully set up as in Figure 6, it was
almost impossible to break through, even if you terraformed to the other team.
The only way to stop these teams was to harass them enough that they couldn’t
get their cookie up. We think that if the tournament had run a few more weeks,

5



Figure 5: Steam Locomotive’s
turtle with a drone wall.

Figure 6: smite’s cookie, from the
qualifying tournament.

cookies would be the dominant strategy as defense would prevail over offense.
Additionally, the economic advantage from land control was only temporary as
the map would flood at an exponential rate.

One more theme in Week 3 was that every top team, no matter what their
strategy, now had a drone harass. A drone harass was essential to attempt to
sabotage your opponents’ strategy, no matter what it was. Thus, we decided
to direct our miners to try to run toward the enemy HQ location along our
lattice, effectively making them be near the edge of the lattice and ready to
build net guns at almost all times. We built net guns whenever we saw drones,
but had a few restricting conditions: we kept at least as many vaporators as
we had net guns until we stopped building vaporators, and we would usually
build net guns at least 8 distance squared away from each other. Additionally,
we would only build net guns in the “corners” of the space inside our wall to
help landscapers get our initial wall up, or on top of our lattice such that they
wouldn’t get flooded until round 1600. All conditions except the ”inside corner”
and vaporator ones were relaxed whenever we were close to the enemy HQ (we
love offensive net guns) or could see lots of enemy drones and buildings. Figure
7 shows an example of our net gun formation.

We spent a lot of time coding during Week 3, and it paid dividends. We
were able to rise up to the front page on the scrimmage rankings, and were
beating lots of teams with our Java clone. However, we still struggled with rush
teams. Unlike many other teams, we didn’t keep a drone back to defend rushes,
which made us weaker vs rush teams but stronger vs other non-rush teams,
as the harassment from the early drone sometimes snowballed into a decisive
economic advantage. We especially struggled with the rush team Kryptonite,
who would often save up a ton of soup as they rushed to our base, then as soon
as they arrived spit out a ton of units, while we had been busy building up our
economy. Additionally, Kryptonite prioritized surrounding their own net gun
over destroying our HQ, which often led to extended standoffs as we were unable
to build drones and unable to bury their net gun. This messed up our build
order as we had our HQ signal when rushed, and our miners stopped building
vaporators when we were being rushed.

6



Figure 7: Our net gun formation: notice the 4 net guns on the inside corners.
Each net gun is at least 8 distance squared from the nearest net gun, except for
on the left edge where we were coming into contact with the enemy’s lattice.

Despite our approximately 50-50 win rates against Kryptonite, we were
beating all other teams the majority of the time in scrimmages, so we were fairly
confident going into the qualifying tournament with our 4th seed. We were able
to attain rank 1 on the scrimmage ladder which was another confidence booster.

7 Qualifying Tournament

But of course, it can never be easy. Despite having the 4th seed, we ended
up being matched up against Kryptonite in the round of 16, who had the
20th seed due to not building their rush bot until after the seeding tournament.
However, we luckily managed to defeat them in a nerve-wracking 3-2 best of 5,
in which we lost the first 2 games. We won the games where they either failed
to path to us or we happened to pick up and drown their rushing miner right as
it was reaching our base. Deservingly, Kryptonite ended up qualifying from
the losers bracket. However, Chicken, who had a seed in the 50s, was not so
lucky. Despite being on the top page in the scrimmage rankings, they failed
to qualify due to being matched up with Kryptonite even earlier than us and
facing a tough matchup in the losers bracket. We feel their pain as we failed to
qualify in a similar fashion in 2017.

8 Final Adjustments

After the qualifying tournament, we had just a day to make some final
improvements to our bot. We wanted to make some improvements and bug fixes
with our drones, but our drone class was a bit of a mess code-wise. We made the
perhaps unwise choice to rewrite our whole drone class that night, staying up

7



Figure 8: Us continuing our normal build order despite Kryptonite’s rush
resulting in a stalemate through round 900.

until 5 AM debugging the new version. While the new version worked fine and
both removed some bugs and implemented some new features such as dropping
miners off in the crunch to build net guns and harassing enemy soup locations,
it was a lot of time spent on something that could have been very little time
spent if we had written the drone class in a more extensible fashion earlier. This
may ended up costing us a lot.

The other main focus of our last day was implementing a strategy to counter
Java. Since neither of us built any sort of turtle wall, both of our lattices and
HQ would flood at round 1640, making games between us a coin flip. To counter
them, we decided that if our crunch failed we should run back with our remaining
landscapers and raise our 7x7 wall until we flooded. We ended up getting this
to work but it was very buggy as it was implemented in the very last few hours.
Additionally, we did not want to test it against Java or smite, who we viewed
as our main competitors for 1st place in finals and thus didn’t want to give them
any information about our last-minute changes. This meant that bugs which
appeared against them but not ourselves would go undiscovered.

We also made a last-minute change to somewhat counter Kryptonite’s
super annoying extended rushes: return to normal build order at round 400
whether we are being rushed or not. While hacky, this solution allowed us to
win some games against them even when they had a net gun surrounded near
our base, as illustrated in Figure 8.

Finally, we introduced the notion of pollution to our bot in the very last
hour before the deadline. We made it so that if we were going to move to a
square that had so much pollution that our sensor radius would be less than 2,
we wouldn’t. That was all we had time to do, and still didn’t drown cows or
drop cows off near the enemy team like some others.

8



9 Final Tournament

We went into the final tournament feeling cautiously optimistic about our
chances as the 1 seed with a counter implemented against Java. However, we
knew we were still vulnerable to rush teams.

The first surprise of the final tournament came when Prasici successfully
tricked Steam Locomotive’s communications by broadcasting the first mes-
sage their seeding bot had sent. This hilariously caused Steam Locomotive’s
landscapers to run towards the edge of the map, trying to get to where they
thought their HQ was. We were initially very concerned by Prasici’s commu-
nication sabotaged, but it turns out that it wouldn’t have affected us as we
made sure to change our communication encryption constants right before we
submitted.

One more shoutout goes to Bowl of Chowder, who was the only team to
successfully implement self-destruction of landscapers in order to create islands
to build net guns to break drone walls. This was something that we never got
around to doing and it was very exciting to see it in action. It was the only way
to defeat a drone wall without terraforming all the way to the opponent.

A final shoutout goes to Bagger288, who implemented a strategy where
their landscapers would self-destruct and be replaced with net guns if they
detected they were soon going to get crunched on. This would have been a
fantastic counter to us if we hadn’t implemented our last-minute turtling.

We were able to take our first two matches against horsepaste and Bowl
of Chowder 3-0 and 3-1. However, we were matched up against Battlegaode
in the semi-finals on winners, who was still a top rush/turtle team. One of the
games we lost to their rush. The other three games, we were able to defend
their rush, however they had a new feature where they would build defensive
net guns on the edges of their turtle to defend against crunches. This worked
very well against us in the games where we were not able to harass them well
enough or terraform to their HQ. Thus, they were able to defeat us 3-1.

Once we fell to the losers bracket, we were able to defeat the-levee-builders,
matching us up against smite. We weren’t sure what to expect since we hadn’t
scrimmaged them in a little while. We knew that if they got their cookie up,
we were probably screwed as the cookie formation was very difficult to break.
They ended up defeating us 3-2, with 2 of their victories being on maps with
very many cows. It turned out that not dealing with cows came back to haunt
us, as in one of those matches there were so many cows near our HQ we failed
to get our initial wall up, and in the other it slowed our progress considerably,
making our drone harass less effective and allowing smite to get up the vaunted
cookie. While scrimmages later revealed our bot’s win rate against smite was
fairly high, it was fair for us to get eliminated based on not dealing with an
important aspect of the game.

Our loss against smite meant we got 4th place. Java ended up winning,
defeating both Battlegaode and smite. It turned out that Java also imple-
mented a last minute fix to counter us, and through scrimmages we found out
that they had a good win-rate against us. When we hadn’t happened to build

9



net guns in all 4 corners of our initial setup, their drone harass was able to
pick landscapers up off our last-minute turtle, allowing their last-minute turtle
to survive longer than ours. It was pretty hilarious to watch with them and
discuss how both of our last-minute strategies could have been easily improved
with more time.

10 Final Thoughts for 2020

Thanks to teh devs for creating a super interesting and fun game and for
running things very smoothly this year! The return to the tried and true Java
engine removed many hiccups from the process that were present in 2018 and
2019.

Congrats to Java Best Waifu for getting 1st, and thanks to all the com-
petitors for a fun and competitive year. Battlecode is so fun because of the
community.

Lastly, we compiled a large amount of hard coded constants in our bot in the
MagicConstants.java file. We wanted to tune these constants, but it was tough
to tune them robustly given we could only play against bots we had, and we
also wanted to tune against both cookies and strong rushes like Kryptonite’s.
Additionally, we were constantly making big changes to our bot, so it felt like
any tuning would soon be possibly irrelevant. Thus we ended up not being able
to tune any of our constants robustly, but encourage future Battlecode teams
to tune better!

11 Lessons from 6 years of Battlecode

This is the end of 6 years straight of Battlecode for Eli and probably Aaron,
though we might be back if we go to grad school at some point. Our performance
has ranged from 3 top 4 finishes to missing top 16 twice. Here are some tips for
doing well, roughly in order of importance:

• Don’t be afraid to copy: I think lots of teams want to come up with
a cool new original strategy and demolish everyone with it. While that
feeling must be amazing, in all our years we have done this exactly 0 times.
The most tried and true strategy in Battlecode is to copy whatever better
teams are doing. There is 0 shame in this, in our opinion. We were able to
temporarily have a significantly better bot than Java by copying exactly
what they were doing, then making some beneficial tweaks.

• Prioritization, prioritization, prioritization: Every bot in the final
tournament has so many areas for improvement, even the top ones. Java
(1st), smite (2nd), and us (4th) were laughing about some of the bugs and
missing features in our final bots after the tournament. I really think the
main difference between the better and worse teams is not coding skill or
speed but prioritization. You only have 3 weeks to write your bot, so you

10



have to decide which features, and later bug fixes, are most important.
This means that it is not a good strategy to go through a replay and
note every single area of improvement, then go fix them all immediately.
Rather, use a task management system (we used Asana but there are lots
of options) to keep track of things to do sorted by priority. Always do the
highest priority things first. If you are having trouble determining which
things are the highest priority, think about how much the change will
increase your win rate. It helps to have a lot of experience with strategy
games. There is one exception to this as described in the next bullet.

• Do general things first: The first week and a half-ish of Battlecode
should be mostly focused on writing code which won’t change if your
strategy changes. For example, navigation, resource-gathering, and com-
munication. While this advice has been given many times in many post-
mortems, it is worth repeating because it is true.

• Start early, but don’t worry about placement in the Sprint Tour-
nament: This year we made the mistake of not doing much in the first 1.5
weeks, which put us at a disadvantage in general code as described above.
I think we underestimated how much this mattered until Java told us
about their trick they had come up with for going through sensed loca-
tions in a bytecode-efficient manner. As described above, spend this time
doing general things! Placement in the sprint tournament is meaningless,
and the meta will often shift due to balance changes and/or natural meta
evolution.

• Write good (readable and extensible) code: Even though Battlecode
is only 3 weeks, it’s worth taking the time to write good code the first time.
Re-writing and debugging badly written code is very costly, as illustrated
by our late drone rewrite when we could have been spending time on more
important things.

• Debugging: Use indicator lines when debugging location-based bugs,
they are super helpful and save so much time compared to print state-
ments. We were dumb enough to never use them until this year!

• On the time between qualifying for finals and the final submis-
sion deadline: In 2015 and 2016 when we qualified for finals, our qual-
ifying bot was the one submitted for finals. In 2019 and 2020, we were
presented with a new dilemma: we had about a day after we found out
we qualified to improve our final submission. In 2019, we were far too
cautious. We made very few changes as we didn’t want to introduce any
bugs, and this led to us falling from the top team to a deserved 4th place
finish. This year, we tried to make too many changes, and didn’t make
any individual one of them super well. For example, our last-minute turtle
worked well except that it was dead to any semblance of drone harassment.
Our advice to teams which qualify for finals in future years is to choose
one or two impactful improvements to your bot, and make them very well.

11



Scattershooting a lot of small, buggy improvements did not work out too
well for us.

We hope these tips are useful to future competitors and that Battlecode
continues to thrive for many years!

12


	Introduction to the game
	Week 1
	Sprint Tournament
	Week 2
	Seeding Tournament
	Week 3
	Qualifying Tournament
	Final Adjustments
	Final Tournament
	Final Thoughts for 2020
	Lessons from 6 years of Battlecode

