
1

Cout for Clout - Battlecode 2024 Strategy Guide
Daniel Qiu, Johnny Liu, Max Wang, David Wei

February 2024

Table Of Contents
Table Of Contents 1
Team Introduction 2
Overall Timeline 3
Strategy Development 3

Package name: MacroPath 3
Package name: HotlineBling 3
Package name: BobTheBuilder 4
Package name: WaxtheBuilder 4
Package name: WaxingMoon (Final Submission) 5

Attack Micro 5
Defense 5

The Tournament 6
Strategy Thoughts 8

Attacker/Healer/Chicken Micro - XSquare is Always Right 8
General Ideas 9
Chicken Micro 9
Healer Micro 9
Attack Micro 9

Communication 9
Message Queue - 4 Musketeers is always shooting 10
One sitting duck - Chenyx is always watching 10
Flag Passing - Wololo is always Wolo-ing 11
Other 11

Placing Traps 11
Filling Water 12
Flag Sniping 13

Overall Thoughts 13



2

Team Introduction
We’re Cout for Clout, senior year high schoolers from Thomas Jefferson High School for Science and
Technology. Since we were named Cin to Win last year, we decided to continue the C++ rhymes and
name ourselves the opposite. This is Johnny and Daniel’s third year doing battlecode, Max’s second
year doing battlecode, and David’s first. We placed 1st in the high school division, and ended up
ranking 2nd on the final combined leaderboard (including college students and post-graduates).

Our Code:
https://github.com/ChiMasterBing/battlecode24

Final Submission:
https://github.com/ChiMasterBing/battlecode24/tree/main/src/waxingmoon

Figure 1: rankings post-final submission deadline

https://github.com/ChiMasterBing/battlecode24
https://github.com/ChiMasterBing/battlecode24/tree/main/src/waxingmoon


3

Overall Timeline

Figure 2: A timeline along with package names for our submissions. (Graph Credit: camel_case)

Strategy Development

Package name: MacroPath
Stand on the shoulders of giants. -Probably XSquare

Our first act was to rip off all of the basic functionality from previous code. We stole the symmetry
and structure from our 2023 code and put in bug-find from 4 Musketeers, ignoring their global
obstacle calculations. Finally, we wrote basic attack micro and established basic macro strategy.

Package name: HotlineBling
I know when that hotline bling, that can only mean one thing. -Drake

Here, we added the functionality for ducks to call each other on their cell phone. Specifically, we
wanted to stop enemies from stealing our flag. A crude distress system was put in, which made ducks
mark the closest spawn to where the flag was being stolen. Jailed ducks would then spawn there. We
also put in general communication plumbing, such as communicating friendly spawn locations and
tagging each one of our ducks with their exact move order number.

https://jmerle.github.io/battlecode-2024-statistics/


4

Package name: BobTheBuilder
BOB THE BUILDER, CAN HE BUILD IT??? BOB THE BUILDER, NO HE CAN’T!!! -Not Bob the
Builder

We saw how a lot of top teams, including buhg and Super Cow Powers, managed to quickly level up
to get 3 level 6 builders and build traps for 50% of the cost. Because we idolize every single top team,
we decided to try it as well. Although this strategy allowed us to place more traps, these traps were
much less efficient, and it only did better against a few teams, so we got rid of it.

However, even though we don’t use level 6 builders, traps are still important. We made the first of
many changes in trap logic. See Placing Traps for full details.

Package name: SittingDuck
There's no sitting duck. Offense is the best defense -Sun Tzu Art of War

Our defense sucks. SuperCowPowers and other teams have pioneered the “sitting duck” strategy, so
we decided to try it. Turns out, using 3 ducks to sit on your spawn makes you lose just about every
micro battle. By doing a simple test of 47 vs 50 ducks, we found that the version with 47 lost 90% of
the games, and it wasn’t even close. Thus, we gave up on sitting ducks. Instead we decided to be even
less defensive and go full aggro – making our micro as aggressive as possible. This improved our
rating a whopping 130 points (from 1720 to 1850).

Having aggro micro was not enough, we need to be more aggressive! So, we put in a simple system
for ducks to spawn at the location of closest combat. Also, we put in better early game, spawning more
ducks closer to your opponent, and calculating symmetry better by exploiting the properties of spawn
locations. This change helped our ducks get to the fight way quicker and improved our rating a decent
bit.

Package name: WaxtheBuilder
WAX THE BUILDER, CAN HE BUILD IT??? WAX THE BUILDER, NO HE CAN’T!!! -We Aren’t Very
Creative

We ended up making micro a bit more passive and trying the builder strategy again — we hoped that
our more passive micro would help. It ended up still not working well, and we got rid of it again and
never put it back after seeing that Gone Sharkin’ did not use it.

We also developed a new Comms system. With these Comms systems, we were able to extend the idea
of combat locations beyond just “spawning.” For example, we would have code that summons friendly
ducks to combat locations, locations that we determined would have a lot of combat happening there.



5

We also tried to make our bot use water bombs and healers to build up levels. This ended up not
working well, but it helped us develop better healing micro which led to (somewhat) improved wall
combat.

Package name: WaxingMoon (Final Submission)

Attack Micro
床前明月光疑是地上霜举头望明月低头思故乡 -Li Bai

One night, as we gazed upon the waxing moon, we struck a brilliant idea. All the top teams seemed to
have XSquare’s attack micro, and our attack micro seemed to be holding us back. We seemed to do
OK against all the teams except XSquare, whose secret micro formula demolished us over and over
again. So we did the one logical thing that anyone would do: rob XSquare’s micro and turn it against
him. As the generous open-source man he is, it took approximately 20 minutes to steal his micro from
his 2022 github.

After this improvement, we shot up from the 1850s to 1950s. Our high rating motivated us, and as we
worked day and night on bug fixes and improving attack, we finally broke the barrier to 2000. See
Attack Micro section for more information.

Figure 3: 2k!!!!



6

Defense
Sometimes full moons turn bad dreams into horrible nightmares -Plants vs. Zombies: Heroes.

Over 2000 rating, second on the overall leaderboard, and over 150 rating points above the second
highest high school team, we could just chill now…. Or could we?

One night, as we gazed upon a full moon we realized that a 1600 rated player (Immortal Jellyfish) had
beaten us. Soon many other 1600s and 1700s would beat us, sniping our flags as we tried to battle
them head-on. Thus began our quest of defense. Using a new Comms system that we developed, we
worked on adding defense, and adding a few tricks like flag passing. See Communication.

The Tournament
The qualifier round for high schoolers occurred and we were one of the top 2 high school teams
invited. Knowing that we were almost 200 points above the other high school team, and having not
lost a single game, we thought we were chilling. Little did we know that we were in for a roller coaster
ride.

We arrived at the hotel Friday night, eager to meet Battlecoders. Maybe one of us was a bit too eager,
proceeding to ask random people in the hotel if they were Chenyx, the legend from Gone
Fishin’/Sharkin’. Luckily, Chenyx is a kind man, and offered to meet us down at the hotel lobby,
saving us from too much embarrassment. We talked about Battlecode strategies for a bit, and then
went back to our rooms for a long day tomorrow.

After exploring a bit of Cambridge the next day, we met up with other teams: om nom, dont eat my
nonorientable shapes, pat, buhg, Gone Sharkin, hadoop, wololo, Post Modernism, DIABLOSIS:Naga.
Thanks to everyone who talked to us, it was very interesting hearing about everyone’s strategies and
stories :D.

The final high school tournament begun, and the quick win we thought would happen turned into a
stressful nightmare, as we traded games one by one. Sometimes we would win due to better micro, but
sometimes our less aggressive micro would just be pushed so far back to spawn that we ended up
blocking our own spawn, and suffocating.

The score was 2-2, with a nail biting final match. Gopher (brown)’s ducks were surrounding our
spawn, thus forcing our ducks onto our own spawn, and blocking our own spawn. Since our ducks
prioritize spawning from spawn zones with a lot of enemy ducks, our ducks would soon be
overwhelmed quickly and we would have lost.



7

Figure 4: Brown (Gopher) is surrounding us (white) and has a completely winning position

However, a few brown ducks somehow made their way to our bottom and top left spawn zones, which
activated defense at the bottom right, and freeing our ducks from being sandwiched by the opponent.

Figure 5: Our defenses are activated, and we achieve a better position

Then the game just simplified into a micro battle, which we won.



8

Strategy Thoughts

Attacker/Healer/Chicken Micro - XSquare is Always Right
Throughout every package we spent a lot of time improving and modifying the attacker micro. We
started off with a bad attacker micro, using lots of if statements and a combat BFS to move. The if
statements would decide whether to push or retreat and the BFS would move towards the closest
friendly spawn or the enemy to achieve that. Outside of pathfinding, this BFS had two main features:
try to avoid diagonals and try to avoid water. However, our attacker micro ended up getting too
complicated to modify, and a pain in the neck due to the unpredictable nature of our BFS.

We ended up using XSquare’s attack micro strategy, which was to look at any direction a robot could
go, and for any direction, have a heuristic to weigh how good a square was. This simple idea and clean
framework proved to be a crucial advantage, leading us to dominate the top leaderboards.

Along with XSquare’s basic micro layout, here are a few ideas that we implemented:

General Ideas
● Use X-Square style micro!!!
● Bucket behavior based on cooldowns and ranges
● Move towards lower health allies
● Move towards lower health enemies
● Move towards allies that were stunned
● Move backwards if the ally behind you has more health than you
● Move towards a combat location (inspired by Lanchester’s laws and Wololo’s lecture)
● Lvl 4+ Healers mainly heal, Lvl 4+ attackers mainly attack

○ Consider attacker DPS increase: 128 (lvl 3) → 170 → 218 → 420 (lvl 6) [insane]
● Don’t be too clumped up (or else micro becomes bad because you can’t move anywhere)
● More healers, because they were easier to level up, and could protect attackers from dying.

Chicken Micro
● Happens if health<=450+(Max(attackLvl, healLvl)-3)*150
● Avoid enemy troops if too low on health
● Turn into healer, and try to mainly heal

Healer Micro
● Happens if rc.getID()%3<2 and HealLvl>4
● Try to avoid enemy troops and move towards ally troops



9

Attack Micro
● Attack!!!
● If cooldown<20, let opponent move-hit you because it is not necessarily a bad thing, and

allows you to not waste any turns if your opponent is stunned

Communication
This year, communicating between ducks was much simpler, as ducks could access and modify the
shared array at any time. Due to this ease-of-use, we were able to utilize communications for purposes
not limited to the following:

● Summoning ducks for attack or defense
● Ally and enemy flag information
● Map info and pathfinding
● Flag passing
● Setup

Message Queue - 4 Musketeers is always shooting
We built off of 4 Musketeers’ buffer pool framework, adding many of our own structures on top. We
allocated sections of the shared array for different purposes. Many of these sections (e.g. ally status
information) would be parsed and updated every turn.

However, there were some messages that would not be sent as often, and of which there were too
many types to allocate array space for. We implemented a queue for these messages, as it was the most
efficient way for bots to read new messages and write their own. This queue system does not require
the clearing of slots (saving 75 bytecode per write operation), and both reading/writing happen on the
same turn.

This message queue is used for our squadron system, which summons ducks to combat locations. The
reason for this is Lanchester’s square Law, adding one duck increases the power of a large army by a
lot, but a small army by a little. Thus, we try to send ducks to combat locations so they are more close
together, rather than just sending them straight to the target.

In addition to tracking combat fronts, squadrons doubles up to serve as our defense system.
Specifically, we implemented special criteria to call a squadron message of top priority when our flag
is being picked up. This causes nearby ducks to swarm the enemy stealing our flag.



10

One sitting duck - Chenyx is always watching
However, we still could get sniped, as we left no duck sitting on our bread. If any enemy duck
approached while no friendly ducks were there, we would get robbed. We were complaining about this
in VC when Chenyx suggested a genius idea, to keep track of whether your flag was under attack
using the rc.canSpawn() command. This can directly be exploited to detect if there’s a duck on your
spawn pad. By keeping one duck permanently unspawned, and having other ducks communicate if
they are stepping on the spawnpad, we can “magically” spawn reinforcements as soon as an enemy
steps on our spawn pad. This is much more efficient than sitting duck as it only immobilizes one duck,
as opposed to three. By Lanchester’s Law, this 2 duck difference cannot be overlooked.

Flag Passing - Wololo is always Wolo-ing
After watching some replays against Wololo, we also added flag passing, which helped our troops get
the flag to its destination much faster.

There are two main advantages to flag passing:
1. The movement cooldown for holding a flag is 20. However, a duck could drop a flag a distance

sqrt(2) from its position, and a duck that is a distance sqrt(2) from the dropped flag position
can pick it up. Thus, in two turns, flag passing allows for a maximum travel distance of
2sqrt(2) as opposed to the normal sqrt(2) distance.

2. A large weakness of bugNav is dealing with multiple robots, leading the flag carrier to be
blocked by other friendly ducks. Flag passing significantly reduces this issue since the flag
holder would not need to bugNav through all the ducks; it can just pass the flag instead.

We allocate a few slots in Comms for the flag holder to assign closer robots to pick up the flag. The
new robot is picked based on Manhattan distance to the closest spawn. Euclidean distance poses some
problems as it’s harder to measure the actual benefit of passing to the chosen robot. Ducks in the
process of bug finding do not pass flags to avoid getting stuck. Also, accounting for the flag carrier’s
movement cooldown would be beneficial, but was not included in time for our final submission.

Other
● We communicate all friendly duck’s relative move order at the beginning of the game
● We communicate the status and location of all enemy flags.

○ To retarget ducks faster after picking up a flag
○ To remove the imprecision of broadcast locations



11

Placing Traps
We claim that traps that are triggered quickly are generally better. In the pre-sprint-1 explosive trap
meta, this was true as it would allow us to more quickly push back opponents. This effect is even more
pronounced in the stun meta as you risk your robots not being there if the trap is triggered later on.
Thus, in each possible build location, we count the number of enemy robots in radius 8. More robots
would signify a higher chance that one of them would trigger our trap. This also causes traps to be
placed in higher density areas, affecting more enemy ducks.

Another heuristic used to maximize the speed our traps would be triggered is to see if the trap-building
location is between the enemy and your flag. If this is true, it is much more likely that they will walk
on your trap.

The one nuance is preventing too many stun traps triggering at once on a single duck, as that’s
inefficient. At first, we tried a grid system to play traps at modulo 3 locations. However, this would
result in sub-par trap placements in terms of trigger speed. The final scheme combined both of these
ideas, where we use the trigger-speed heuristics, while choosing not to place traps if there’s another
one in an +-pattern.

Figure 6 & 7: Trap placement

On the left, the red squares represent where a new trap cannot be placed. This generates the diagonal
patterns seen on the right. These layered diagonals trap placements yield the following benefits:

● Only diagonal movements can cause multiple traps to detonate at once
○ This rarely happens as it requires enemy ducks to be perfectly placed, and other enemy

ducks behind to not trigger the stun beforehand (essentially meaning that your opponent
is sending in ducks alone)

● Once the first layer of traps is detonated, another step forward will detonate another layer of
traps, creating consistent stun coverage

These heuristics are weighed against a threshold for building traps based on the amount of available
crumbs.



12

Filling Water
We use a simple scheme that is on-par with most top teams. The most simple variant is filling in a
checkerboard pattern when there’s no enemies in action/vision range, which already suffices for top
ladder scrimmages.

We modify this slightly to account for maps such as racetrack. Instead of filling in water at (x, y % 2 =
1), we look at how water is distributed. For each location that contains water and is within a distance
of 2, we tally the number of impassable squares in North South East West, and we fill if that number is
greater than 1. This usually generates a checkerboard as well, and is more robust against wacky water
patterns.

Flag Sniping
We allocate 3 ducks to be snipers, whose sole purpose is to harass the opponent / sneak their flag out.
They are sent to different broadcast locations in hopes of stumbling across an undefended flag. This
scheme also yields the unintended benefit of more space being visited, and providing better defense
calls.

Overall Thoughts
This year was very micro-heavy, so a lot of our time was spent on optimizing micro. Overall our
Postmortem focused on the big picture, but the majority of our time was on the finer details of various
micros. A lot of improvements are intuitive, not necessarily complicated, and not necessarily worthy
of writing down here. What’s important is to take the time to try those things and mess around. Most
teams use the same ideas; it’s the execution of those ideas that make most of the difference, only
possible through careful analysis of scrimmages and your code. Finally, it’s so helpful to be involved
in the community. Whether it’s Chenyx, or XSquare, or someone else, chances are talking to them will
yield something useful.

Thanks to everyone who played for making battlecode so enjoyable, Super Gopher Powers for scaring
the crumbs out of us, SPAARK for making us improve our defense, XSquare for making his micro
public, 4 Musketeers for making their bugNav and Comms public, Wololo for his cool lecture, Gone
Sharkin’ for always being better than us, Jasper for always being there in VC, and all the people we
met in person for being so cool to hang out with. And finally, a massive thank you to Teh Devs,
especially Evan, for running Battlecode and making this all possible.

Battlecode 24, as always, was incredibly enjoyable. We’ll definitely be competing next year, and we
hope to interact with everyone there.

– Cout for Clout


